Home
Class 11
PHYSICS
If vecA= 6hati- 6hatj+5hatk and vecB= ha...

If `vecA= 6hati- 6hatj+5hatk and vecB= hati+ 2hatj-hatk`, then find a unit vector parallel to the resultant of `veca & vecB`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector parallel to the resultant of the vectors \(\vec{A}\) and \(\vec{B}\), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{A} = 6\hat{i} - 6\hat{j} + 5\hat{k} \] \[ \vec{B} = \hat{i} + 2\hat{j} - \hat{k} \] ### Step 2: Find the resultant vector \(\vec{R}\) The resultant vector \(\vec{R}\) is the sum of \(\vec{A}\) and \(\vec{B}\): \[ \vec{R} = \vec{A} + \vec{B} \] Calculating the components: \[ \vec{R} = (6\hat{i} + \hat{i}) + (-6\hat{j} + 2\hat{j}) + (5\hat{k} - \hat{k}) \] \[ \vec{R} = (6 + 1)\hat{i} + (-6 + 2)\hat{j} + (5 - 1)\hat{k} \] \[ \vec{R} = 7\hat{i} - 4\hat{j} + 4\hat{k} \] ### Step 3: Calculate the magnitude of the resultant vector \(|\vec{R}|\) The magnitude of \(\vec{R}\) is given by: \[ |\vec{R}| = \sqrt{(7)^2 + (-4)^2 + (4)^2} \] Calculating each term: \[ |\vec{R}| = \sqrt{49 + 16 + 16} \] \[ |\vec{R}| = \sqrt{49 + 32} = \sqrt{81} = 9 \] ### Step 4: Find the unit vector \(\hat{r}\) parallel to \(\vec{R}\) The unit vector \(\hat{r}\) is given by: \[ \hat{r} = \frac{\vec{R}}{|\vec{R}|} \] Substituting \(\vec{R}\) and its magnitude: \[ \hat{r} = \frac{7\hat{i} - 4\hat{j} + 4\hat{k}}{9} \] This simplifies to: \[ \hat{r} = \frac{7}{9}\hat{i} - \frac{4}{9}\hat{j} + \frac{4}{9}\hat{k} \] ### Final Answer The unit vector parallel to the resultant of \(\vec{A}\) and \(\vec{B}\) is: \[ \hat{r} = \frac{7}{9}\hat{i} - \frac{4}{9}\hat{j} + \frac{4}{9}\hat{k} \]

To find a unit vector parallel to the resultant of the vectors \(\vec{A}\) and \(\vec{B}\), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{A} = 6\hat{i} - 6\hat{j} + 5\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 11|5 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 12|4 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 9|4 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Find the resultant of vectors veca=hati-hatj+2hatk and vecb=hati+2hatj-4hatk . Find the unit vector in the direction of the resultant vector.

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .