Home
Class 11
PHYSICS
If vecA= 2hati-2hatj-hatk and vecB= hati...

If `vecA= 2hati-2hatj-hatk and vecB= hati+hatj`, then :
(a) Find angle between `vecA and vecB`.
(b) Find the projection of resultant vector of `vecA and vecB` on x-axis.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will address both parts of the question: finding the angle between the vectors and finding the projection of the resultant vector on the x-axis. ### Given: - \(\vec{A} = 2\hat{i} - 2\hat{j} - \hat{k}\) - \(\vec{B} = \hat{i} + \hat{j}\) ### Part (a): Find the angle between \(\vec{A}\) and \(\vec{B}\). 1. **Calculate the dot product of \(\vec{A}\) and \(\vec{B}\)**: \[ \vec{A} \cdot \vec{B} = (2\hat{i} - 2\hat{j} - \hat{k}) \cdot (\hat{i} + \hat{j}) \] \[ = 2 \cdot 1 + (-2) \cdot 1 + (-1) \cdot 0 = 2 - 2 + 0 = 0 \] 2. **Calculate the magnitudes of \(\vec{A}\) and \(\vec{B}\)**: \[ |\vec{A}| = \sqrt{(2)^2 + (-2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] \[ |\vec{B}| = \sqrt{(1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 3. **Use the dot product to find the cosine of the angle**: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{0}{3 \cdot \sqrt{2}} = 0 \] 4. **Determine the angle \(\theta\)**: Since \(\cos \theta = 0\), we find: \[ \theta = 90^\circ \] ### Part (b): Find the projection of the resultant vector of \(\vec{A}\) and \(\vec{B}\) on the x-axis. 1. **Calculate the resultant vector \(\vec{R} = \vec{A} + \vec{B}\)**: \[ \vec{R} = (2\hat{i} - 2\hat{j} - \hat{k}) + (\hat{i} + \hat{j}) \] \[ = (2 + 1)\hat{i} + (-2 + 1)\hat{j} + (-1)\hat{k} = 3\hat{i} - \hat{j} - \hat{k} \] 2. **Find the projection of \(\vec{R}\) on the x-axis**: The projection of a vector on the x-axis is simply the coefficient of \(\hat{i}\) in the vector. \[ \text{Projection of } \vec{R} \text{ on x-axis} = 3 \] ### Final Answers: (a) The angle between \(\vec{A}\) and \(\vec{B}\) is \(90^\circ\). (b) The projection of the resultant vector on the x-axis is \(3\).

To solve the given problem step by step, we will address both parts of the question: finding the angle between the vectors and finding the projection of the resultant vector on the x-axis. ### Given: - \(\vec{A} = 2\hat{i} - 2\hat{j} - \hat{k}\) - \(\vec{B} = \hat{i} + \hat{j}\) ### Part (a): Find the angle between \(\vec{A}\) and \(\vec{B}\). ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 12|4 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise TRIGONOMETRY|7 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 10|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

vecA=(hati-2hatj+6hatk) and vecB=(hati-2hatj+hatk) , find the cross product between vecA and vecB .

vecA=(hati-2hatj+6hatk) and vecB=(hati-2hatj+hatk) , find the cross product between vecA and vecB .

vecA=(3hati+2hatj-6hatk) and vecB=(hati-2hatj+hatk) , find the scalar product vecA and vecB

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB

IF vecA = (2 hati + hatj) and vecB = hati - hatj + 5 hatk find (i) vecA xx vecB (ii ) angle between vecA and vecB (iii ) unit vector perpendicular to vecA and vecB .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be