Home
Class 11
PHYSICS
If sqrt3|vecAxx vecB|= vecA*vecB, then f...

If `sqrt3|vecAxx vecB|= vecA*vecB`, then find the angle between `vecA and vecB`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between vectors \(\vec{A}\) and \(\vec{B}\) given the equation: \[ \sqrt{3} |\vec{A} \times \vec{B}| = \vec{A} \cdot \vec{B} \] ### Step-by-Step Solution: **Step 1: Understand the Cross Product and Dot Product** The magnitude of the cross product \(|\vec{A} \times \vec{B}|\) is given by: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] where \(\theta\) is the angle between the vectors \(\vec{A}\) and \(\vec{B}\). The dot product \(\vec{A} \cdot \vec{B}\) is given by: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] **Step 2: Substitute the Expressions into the Given Equation** Substituting the expressions for the cross product and dot product into the given equation: \[ \sqrt{3} (|\vec{A}| |\vec{B}| \sin \theta) = |\vec{A}| |\vec{B}| \cos \theta \] **Step 3: Simplify the Equation** Assuming \(|\vec{A}| \neq 0\) and \(|\vec{B}| \neq 0\), we can divide both sides by \(|\vec{A}| |\vec{B}|\): \[ \sqrt{3} \sin \theta = \cos \theta \] **Step 4: Rearrange the Equation** Rearranging gives us: \[ \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}} \] This can be rewritten as: \[ \tan \theta = \frac{1}{\sqrt{3}} \] **Step 5: Find the Angle \(\theta\)** The angle whose tangent is \(\frac{1}{\sqrt{3}}\) is: \[ \theta = 30^\circ \] ### Final Answer: The angle between vectors \(\vec{A}\) and \(\vec{B}\) is \(30^\circ\). ---

To solve the problem, we need to find the angle between vectors \(\vec{A}\) and \(\vec{B}\) given the equation: \[ \sqrt{3} |\vec{A} \times \vec{B}| = \vec{A} \cdot \vec{B} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise TRIGONOMETRY|7 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise GEOMETRY|7 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 11|5 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If veca . vecb =ab then the angle between veca and vecb is

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

IF veca . vecb =0 then what is the angle between veca and vecb