Home
Class 11
PHYSICS
The angle between vectors (vecA xx vecB)...

The angle between vectors `(vecA xx vecB) and (vecB xx vecA)` is :

A

`pi` rad

B

`(pi)/(2)` rad

C

`(pi)/(4)` rad

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{A} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Cross Product Properties**: - The cross product of two vectors \( \vec{A} \) and \( \vec{B} \) is given by: \[ \vec{A} \times \vec{B} = -(\vec{B} \times \vec{A}) \] - This means that \( \vec{B} \times \vec{A} \) is equal to the negative of \( \vec{A} \times \vec{B} \). 2. **Set Up the Dot Product**: - To find the angle \( \theta \) between the two vectors \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{A} \), we can use the dot product formula: \[ \vec{A} \times \vec{B} \cdot \vec{B} \times \vec{A} = |\vec{A} \times \vec{B}| |\vec{B} \times \vec{A}| \cos(\theta) \] 3. **Substitute the Cross Product Relation**: - Since \( \vec{B} \times \vec{A} = -(\vec{A} \times \vec{B}) \), we can substitute this into our equation: \[ \vec{A} \times \vec{B} \cdot (-\vec{A} \times \vec{B}) = |\vec{A} \times \vec{B}| |\vec{A} \times \vec{B}| \cos(\theta) \] 4. **Simplify the Dot Product**: - The left-hand side simplifies to: \[ -|\vec{A} \times \vec{B}|^2 \] - The right-hand side simplifies to: \[ |\vec{A} \times \vec{B}|^2 \cos(\theta) \] 5. **Equate and Solve for Cosine**: - Setting the two sides equal gives: \[ -|\vec{A} \times \vec{B}|^2 = |\vec{A} \times \vec{B}|^2 \cos(\theta) \] - Dividing both sides by \( |\vec{A} \times \vec{B}|^2 \) (assuming it is not zero): \[ -1 = \cos(\theta) \] 6. **Find the Angle**: - The cosine of \( \theta \) being -1 implies: \[ \theta = \pi \text{ radians} \] ### Final Answer: The angle between the vectors \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{A} \) is \( \pi \) radians.

To find the angle between the vectors \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{A} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Cross Product Properties**: - The cross product of two vectors \( \vec{A} \) and \( \vec{B} \) is given by: \[ \vec{A} \times \vec{B} = -(\vec{B} \times \vec{A}) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-II AIPMT/NEET & AIIMS (2006- 2018)|6 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-III CHECK YOUR UNDERSTANDING|15 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise DOT PRODUCT|20 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

The angle between the two vectors veca + vecb and veca-vecb is

The angle between veca xx vecb and vecb xx veca is

If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2 , vecc.vecd=1/2 and angle between veca xx vecb and vecc xx vecd is pi/6 then the value of |[veca \ vecb \ vecd]vecc-[veca \ vecb \ vecc]vecd|=

If the angle between the vectors vecA and vecB is theta, the value of the product (vecB xx vecA) * vecA is equal to

vecA and vecB are two vectors. (vecA + vecB) xx (vecA - vecB) can be expressed as :

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If theta is the angle between any two vectors veca and vecb , then |veca.vecb|=|veca xx vecb| when theta is equal to

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is: