Home
Class 11
PHYSICS
If 3costheta + 4sin theta = A sin (theta...

If `3costheta + 4sin theta = A sin (theta +alpha)`, then values of A and `alpha` are

A

`5*cos^(-1)((3)/(5))`

B

`5, sin^(-1)((3)/(5))`

C

`7, sin^(-1)((4)/(5))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos \theta + 4 \sin \theta = A \sin(\theta + \alpha)\), we will follow these steps: ### Step 1: Rewrite the Right-Hand Side Using the sine addition formula, we can rewrite the right-hand side: \[ A \sin(\theta + \alpha) = A (\sin \theta \cos \alpha + \cos \theta \sin \alpha) \] This gives us: \[ A \sin(\theta + \alpha) = A \cos \alpha \sin \theta + A \sin \alpha \cos \theta \] ### Step 2: Compare Coefficients Now, we can compare the coefficients of \(\sin \theta\) and \(\cos \theta\) from both sides of the equation: - From \(3 \cos \theta + 4 \sin \theta\), we have: - Coefficient of \(\sin \theta\) = 4 - Coefficient of \(\cos \theta\) = 3 From \(A \cos \alpha \sin \theta + A \sin \alpha \cos \theta\), we have: - Coefficient of \(\sin \theta\) = \(A \cos \alpha\) - Coefficient of \(\cos \theta\) = \(A \sin \alpha\) ### Step 3: Set Up Equations From the comparison, we can set up the following equations: 1. \(A \sin \alpha = 3\) (1) 2. \(A \cos \alpha = 4\) (2) ### Step 4: Square and Add the Equations To find \(A\), we can square both equations and add them: \[ (A \sin \alpha)^2 + (A \cos \alpha)^2 = 3^2 + 4^2 \] This simplifies to: \[ A^2 (\sin^2 \alpha + \cos^2 \alpha) = 9 + 16 \] Since \(\sin^2 \alpha + \cos^2 \alpha = 1\), we have: \[ A^2 = 25 \] Thus, taking the square root: \[ A = 5 \] ### Step 5: Find \(\alpha\) Now, we can substitute \(A = 5\) back into either equation (1) or (2) to find \(\alpha\). Using equation (1): \[ 5 \sin \alpha = 3 \implies \sin \alpha = \frac{3}{5} \] To find \(\alpha\): \[ \alpha = \sin^{-1}\left(\frac{3}{5}\right) \] ### Final Result Thus, the values of \(A\) and \(\alpha\) are: \[ A = 5, \quad \alpha = \sin^{-1}\left(\frac{3}{5}\right) \]

To solve the equation \(3 \cos \theta + 4 \sin \theta = A \sin(\theta + \alpha)\), we will follow these steps: ### Step 1: Rewrite the Right-Hand Side Using the sine addition formula, we can rewrite the right-hand side: \[ A \sin(\theta + \alpha) = A (\sin \theta \cos \alpha + \cos \theta \sin \alpha) \] This gives us: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-IV ASSERTION & REASON|11 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-II AIPMT/NEET & AIIMS (2006- 2018)|6 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If 3 cos theta+4 sin theta=A sin (theta+alpha) , then values of A and alpha are

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( cos ( 2 theta + alpha)) and tan 2 theta = lamda tan ( 3theta + alpha) then the value of lamda is ____________.

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.

Express 2cos theta + 3 sin theta in the form r cos ( theta - alpha ), where r is positive, stating the values of r and alpha. What is the maximum value of 2 cos theta + 3 sin theta ?

If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (theta + alpha ) + (n + 1) tan alpha = 0 .

If sin alpha = lamda sin (theta - alpha ) then prove that tan (alpha - (theta)/(2)) = (lamda -1)/( lamda +1) tan ""(theta)/(2).

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).