Home
Class 12
MATHS
Solve rsinθ=3 , r=4(1+sinθ) , ...

Solve `rsinθ=3` , `r=4(1+sinθ) `, `0≤θ≤2π.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( r \sin \theta = 3 \) and \( r = 4(1 + \sin \theta) \) for \( 0 \leq \theta \leq 2\pi \), we will eliminate \( r \) and find the values of \( \theta \). ### Step 1: Substitute \( r \) from the second equation into the first equation. We know that: \[ r = 4(1 + \sin \theta) \] Substituting this into the first equation gives: \[ 4(1 + \sin \theta) \sin \theta = 3 \] ### Step 2: Expand the equation. Expanding the left side, we have: \[ 4 \sin \theta + 4 \sin^2 \theta = 3 \] ### Step 3: Rearrange the equation. Rearranging the equation gives us: \[ 4 \sin^2 \theta + 4 \sin \theta - 3 = 0 \] ### Step 4: Factor the quadratic equation. Now we will factor the quadratic equation: \[ (2 \sin \theta + 3)(2 \sin \theta - 1) = 0 \] ### Step 5: Solve for \( \sin \theta \). Setting each factor to zero gives us: 1. \( 2 \sin \theta + 3 = 0 \) → \( \sin \theta = -\frac{3}{2} \) (not possible since sine values range from -1 to 1) 2. \( 2 \sin \theta - 1 = 0 \) → \( \sin \theta = \frac{1}{2} \) ### Step 6: Find the values of \( \theta \). The solutions for \( \sin \theta = \frac{1}{2} \) in the interval \( 0 \leq \theta \leq 2\pi \) are: \[ \theta = \frac{\pi}{6}, \quad \theta = \frac{5\pi}{6} \] ### Final Answer: Thus, the solutions for \( \theta \) are: \[ \theta = \frac{\pi}{6}, \quad \theta = \frac{5\pi}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

tan θ =-4/3 , sin θ is

Prove: sin^2θ + cos^2θ =1

The maximum value of Δ= ∣ ∣ ∣ ​ 1 1 1+cosθ ​ 1 1+sinθ 1 ​ 1 1 1 ∣ ​ is (θ is real number )

Solve :- Sqrrt2+ 2+2cos4θ ​ ​ =2cosθ

Solve: {:(3x - 4y - 1 = 0),(2x - (8)/(3)y + 5 = 0):}

cos^2θ - sinθ - 1/4 =0

Solve : 2 1/3-\ 1 2/3+\ 4 1/3

Solve : 2|x+1|^(2)-|x+1|=3 , x in R

Prove that sinα+sin(α+ 3 2π ​ )+sin(α+ 3 4π ​ )=0