Home
Class 12
MATHS
If n^(th) term (T(n)) of the sequece is ...

If `n^(th)` term `(T_(n))` of the sequece is given by the relation `T_(n+1)=T_(n)+2^(n),(n epsilonN)` and `T_(1)=3`, then the value of `sum_(r=1)^(oo)1/(T_(r)-1)` equals

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the infinite sum \( \sum_{r=1}^{\infty} \frac{1}{T_r - 1} \), given the recurrence relation for the sequence \( T_n \) and the initial condition \( T_1 = 3 \). ### Step-by-Step Solution: 1. **Understand the recurrence relation**: We are given that \( T_{n+1} = T_n + 2^n \) and \( T_1 = 3 \). 2. **Calculate the first few terms of the sequence**: - For \( n = 1 \): \[ T_2 = T_1 + 2^1 = 3 + 2 = 5 \] - For \( n = 2 \): \[ T_3 = T_2 + 2^2 = 5 + 4 = 9 \] - For \( n = 3 \): \[ T_4 = T_3 + 2^3 = 9 + 8 = 17 \] - For \( n = 4 \): \[ T_5 = T_4 + 2^4 = 17 + 16 = 33 \] So, the first few terms are: - \( T_1 = 3 \) - \( T_2 = 5 \) - \( T_3 = 9 \) - \( T_4 = 17 \) - \( T_5 = 33 \) 3. **Express \( T_r - 1 \)**: - We can compute \( T_r - 1 \) for the first few terms: - \( T_1 - 1 = 3 - 1 = 2 \) - \( T_2 - 1 = 5 - 1 = 4 \) - \( T_3 - 1 = 9 - 1 = 8 \) - \( T_4 - 1 = 17 - 1 = 16 \) - \( T_5 - 1 = 33 - 1 = 32 \) 4. **Identify the pattern**: - Notice that: - \( T_1 - 1 = 2 = 2^1 \) - \( T_2 - 1 = 4 = 2^2 \) - \( T_3 - 1 = 8 = 2^3 \) - \( T_4 - 1 = 16 = 2^4 \) - \( T_5 - 1 = 32 = 2^5 \) - This suggests that \( T_r - 1 = 2^r \). 5. **Substitute into the sum**: - Now we can rewrite the sum: \[ \sum_{r=1}^{\infty} \frac{1}{T_r - 1} = \sum_{r=1}^{\infty} \frac{1}{2^r} \] 6. **Calculate the infinite geometric series**: - The series \( \sum_{r=1}^{\infty} \frac{1}{2^r} \) is a geometric series with first term \( a = \frac{1}{2} \) and common ratio \( r = \frac{1}{2} \). - The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] - Substituting the values: \[ S = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1 \] ### Final Answer: The value of \( \sum_{r=1}^{\infty} \frac{1}{T_r - 1} \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

If T_(r)=(1)/(log_(z)4) (where r in N ), then the value of sum_(r=1)^(4) T_(r) is :

Let T_(r) be the r^(th) term of a sequence, for r=1,2,3,......... If 3T_(r+1)=T_(r) and T_(7)=(1)/(243) then the value of sum_(r=1)^(oo)(T_(r).T_(r+1)) is :

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

Given that T_(1)=100 N then find T_(2)

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

ALLEN-TEST PAPERS-MATHEMATICS
  1. If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta...

    Text Solution

    |

  2. The number of solution of the equation 2(tanx-sinx)+3(cotx-cosx)+5=0x ...

    Text Solution

    |

  3. If n^(th) term (T(n)) of the sequece is given by the relation T(n+1)=T...

    Text Solution

    |

  4. If lamda(1) is the product of values of x satisfy the equation (x)^(lo...

    Text Solution

    |

  5. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  6. Value of "sin"^(6)(pi)/16+"sin"^(6)(3pi)/16+"sin"^(5pi)/16+"sin"^(6)(7...

    Text Solution

    |

  7. Number of solution of the equation sin^(2)x+(sin^(2)3x)/4=sinx sin 3x,...

    Text Solution

    |

  8. If x and y are real and satisfy the equation x^(2)+16y^(2)-3x+2=0 then...

    Text Solution

    |

  9. If a,b,c,d,e are positive numbers, then which of the following holds g...

    Text Solution

    |

  10. The equation x ^(4) -2x ^(3) + 4x -1=0 has four distinct real roots x ...

    Text Solution

    |

  11. Statement I cos^(3)alpha+cos^(3)(alpha+(2pi)/(3))+cos^(3)(alpha+(4pi)/...

    Text Solution

    |

  12. Find the values of a and b if f is continuous at x=0, where f(x)={:...

    Text Solution

    |

  13. Let there are two functions defined of f(x)="min"{|x|,|x-1|} on the...

    Text Solution

    |

  14. Lim(n to oo) (-1)^(n)sin(pisqrt(n^(2)+n)), n epsilon N is

    Text Solution

    |

  15. If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx, then value of (f(0)-f(pi)...

    Text Solution

    |

  16. For which values of a does the equation 4sin(x+pi/3)cos(x-pi/6)=a^2+sq...

    Text Solution

    |

  17. If introot(3)(x).root(5)(1+root(3)(x^(4)))dx=5/8(1+x^(4/a))^((2a)/b)+c...

    Text Solution

    |

  18. If x=cos^(7)theta and y=sin theta and (d^(3)x)/(dy^(3))=105/a sin (a t...

    Text Solution

    |

  19. If Lim(x to 0)(ae^(x)-bln(1+x)+ce^(-x))/(x sin x)=2 then value of a+b+...

    Text Solution

    |

  20. If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of i...

    Text Solution

    |