Home
Class 12
MATHS
Let f(x) be a cubic polynomical such tha...

Let `f(x)` be a cubic polynomical such that `f'(x)=0` at `x=1` and `x=3, f(1)=6,f(3)=2`, then value of `f(-1)` is

A

`10`

B

`-14`

C

`11`

D

`20`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3)=0, and f'''(3)=12. Then the value of f'(1) is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Let f(x) be a cubic function such that f'(1)=f''(2)=0 . If x=1 is a point of local maxima of f(x), then the local minimum value of f(x) occurs at

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

Let f(x) is a cubic polynomial with real coefficients, x in R such that f''(3)=0 , f'(5)=0 . If f(3)=1 and f(5)=-3 , then f(1) is equal to-

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

ALLEN-TEST PAPERS-MATHEMATICS
  1. f:RtoR is defined as f(x)=x^(3)+2x^(2)+7x+cos(pix) and g be the invers...

    Text Solution

    |

  2. y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

    Text Solution

    |

  3. Let f(x) be a cubic polynomical such that f'(x)=0 at x=1 and x=3, f(1)...

    Text Solution

    |

  4. lim(xto oo)(ln(x^(2)+5x)-2ln(cx+1)=-2 then

    Text Solution

    |

  5. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  6. The quadratic polynomial p(x) has the following properties:p(x)geq0 fo...

    Text Solution

    |

  7. Number of points on [0,2] where f(x)={(x{x}+1,(0lexlt1),(2-{x},1lex...

    Text Solution

    |

  8. Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta...

    Text Solution

    |

  9. Domain off(x)=log(x^2+5x+6)/([x]-1)where [.] denotes greatest integer ...

    Text Solution

    |

  10. The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

    Text Solution

    |

  11. The sum sum(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

    Text Solution

    |

  12. Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal...

    Text Solution

    |

  13. Let f(x)={(cos[x],xge0),(|x|+a,xlt0):} (where [.] denotes greatest i...

    Text Solution

    |

  14. The reciprocal of the value of underset(ntooo)lim(1-(1)/(2^(2)))(1-(...

    Text Solution

    |

  15. The velue of lim(x->0)(sin(3sqrtx)ln(1+3x))/((tan^(- 1)sqrt(x))^2(e^(...

    Text Solution

    |

  16. lim(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

    Text Solution

    |

  17. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  18. Let h (x) = min (x, x^2), x in R, then h (x) is

    Text Solution

    |

  19. The number of points where the function f(x)={{:(1+[ cos ""(pix)...

    Text Solution

    |

  20. f(x)={(x^(2)e^(1//x),x!=0),(0,x=0):} then left hand derivative at x=0 ...

    Text Solution

    |