Home
Class 12
PHYSICS
If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) ...

If `y=sinx+cosx" then "(d^(2)y)/(dx^(2))` is :-

A

`sinx-cosx`

B

`cosx-sinx`

C

`-(sinx+cosx)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = \sin x + \cos x \). ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \sin x + \cos x \] 2. **First Derivative**: We need to find the first derivative \( \frac{dy}{dx} \). \[ \frac{dy}{dx} = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\cos x) \] Using the derivatives of sine and cosine: \[ \frac{dy}{dx} = \cos x - \sin x \] 3. **Second Derivative**: Now, we find the second derivative \( \frac{d^2y}{dx^2} \) by differentiating \( \frac{dy}{dx} \). \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(\cos x - \sin x) \] Using the derivatives again: \[ \frac{d^2y}{dx^2} = -\sin x - \cos x \] 4. **Final Result**: We can factor out a negative sign: \[ \frac{d^2y}{dx^2} = -(\sin x + \cos x) \] ### Conclusion: Thus, the second derivative \( \frac{d^2y}{dx^2} \) is: \[ \frac{d^2y}{dx^2} = -(\sin x + \cos x) \]
Promotional Banner

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Integration)|12 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Graphs))|29 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Trigonometry)|22 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

If y=sinx , then (d^2y)/(dx^2) will be

If y=2sinx , then (d^2y)/(dx^2) will be

If y=sin (sinx) prove that (d^(2)y)/(dx^(2)) + "tan x" (dy)/(dx) + y cos^(2) x =0 .

If y=2sinx+3cosx , show that (d^2y)/(dx^2)+y=0 .

If y=e^x(sinx+cosx) prove that (d^2y)/(dx^2)-2(dy)/(dx)+2y=0 .

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=secx+tanx then prove that (d^2y)/(dx^(2))=cosx/((1-sinx)^(2)) .

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is

ALLEN-RACE-Basic Maths (Differentiation)
  1. If the velocity of a paraticle moving along x-axis is given as v=(4t^(...

    Text Solution

    |

  2. The displacement x of particle moving in one dimension, under the acti...

    Text Solution

    |

  3. A car moves along a straight line whose equation of motion is given by...

    Text Solution

    |

  4. A particle moves along X-axis in such a way that its coordinate X vari...

    Text Solution

    |

  5. Relation between displacement x and time t is x=2-5t+6t^(2), the initi...

    Text Solution

    |

  6. A particle moves along with X-axis. The position x of particle with re...

    Text Solution

    |

  7. If the distance covered by a particle is given by the relation x=at^(2...

    Text Solution

    |

  8. The displacement of a particle is given by x=a(0)+(a(1)t)/(3)-(a(2)t...

    Text Solution

    |

  9. If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

    Text Solution

    |

  10. If v=(t+2)(t+3) then acceleration(i.e(dv)/(dt)) at t=1 sec.

    Text Solution

    |

  11. If y=log(e)x+sinx+e^(x)" then "(dy)/(dx) is

    Text Solution

    |

  12. (d)/(dx)(e^(100))=…………………

    Text Solution

    |

  13. (d)/(dx)(sin120^(@))=…………

    Text Solution

    |

  14. If y=x^(3)cosx" then "(dy)/(dx)=……………………

    Text Solution

    |

  15. If v=(t^(2)-4t+10^(5))m/s where t is in second. Find acceleration at t...

    Text Solution

    |

  16. If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) is :-

    Text Solution

    |

  17. In a straight line motion, the distance travelled is spropt^(5//2) the...

    Text Solution

    |

  18. If radius of a spherical bubble starts to increase with time t as r=0....

    Text Solution

    |

  19. The radius of spherical bubble is changing with time. The rate of chan...

    Text Solution

    |

  20. Given that =(10)/(sin x+ sqrt3 cos x) the minimum positive value of y ...

    Text Solution

    |