Home
Class 12
PHYSICS
If y=sin4x, At x=0, value of (dy)/(dx) ...

If y=sin4x, At x=0, value of `(dy)/(dx)` is :

A

0

B

1

C

-1

D

Infinite

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) when \(y = \sin(4x)\) at \(x = 0\), we can follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \sin(4x) \] To find \(\frac{dy}{dx}\), we differentiate \(y\) with respect to \(x\). ### Step 2: Apply the chain rule Using the chain rule for differentiation, we know that: \[ \frac{d}{dx}(\sin(u)) = \cos(u) \cdot \frac{du}{dx} \] where \(u = 4x\). Therefore, we have: \[ \frac{dy}{dx} = \cos(4x) \cdot \frac{d}{dx}(4x) \] ### Step 3: Differentiate \(4x\) The derivative of \(4x\) with respect to \(x\) is: \[ \frac{d}{dx}(4x) = 4 \] ### Step 4: Combine the results Now substituting back, we get: \[ \frac{dy}{dx} = 4 \cdot \cos(4x) \] ### Step 5: Evaluate at \(x = 0\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = 0\): \[ \frac{dy}{dx} \bigg|_{x=0} = 4 \cdot \cos(4 \cdot 0) = 4 \cdot \cos(0) \] ### Step 6: Calculate \(\cos(0)\) We know that \(\cos(0) = 1\), so: \[ \frac{dy}{dx} \bigg|_{x=0} = 4 \cdot 1 = 4 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = 0\) is: \[ \boxed{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Co-ordinate & Algebra)|37 Videos
  • RACE

    ALLEN|Exercise Basic Maths (VECTORS)|60 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Integration)|12 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If y=sin^3x , then dy/dx=

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

If y = 1/x , then the value of (dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3 is equal to

If y = sin x l n(3x) then (dy)/(dx) will be :

If y=e^(x)sin x , then find (dy)/(dx)

If y=int_(0)^(x)sqrt(sin x)dx the value of (dy)/(dx) at x=(pi)/(2) is :

If x=y+sin^2x then at x=0 , (dy)/dx=

If y=x^(sin x), then find (dy)/(dx)