Home
Class 12
PHYSICS
If hata" and "hatb are non-collinear uni...

If `hata" and "hatb` are non-collinear unit vectors and if `|hata+hatb|=sqrt(3)`, then the value of `(2hata-5hatb).(3hata+hatb)` is :-

A

`(41)/(2)`

B

`(11)/(2)`

C

`-(11)/(2)`

D

`-(41)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and apply vector algebra. ### Step 1: Understanding the given information We have two non-collinear unit vectors \(\hat{a}\) and \(\hat{b}\) such that: \[ |\hat{a} + \hat{b}| = \sqrt{3} \] ### Step 2: Squaring both sides To eliminate the square root, we square both sides: \[ |\hat{a} + \hat{b}|^2 = 3 \] Using the property of magnitudes, we can expand the left side: \[ |\hat{a}|^2 + |\hat{b}|^2 + 2 \hat{a} \cdot \hat{b} = 3 \] ### Step 3: Substituting the magnitudes Since \(\hat{a}\) and \(\hat{b}\) are unit vectors, we know: \[ |\hat{a}|^2 = 1 \quad \text{and} \quad |\hat{b}|^2 = 1 \] Substituting these values into the equation gives: \[ 1 + 1 + 2 \hat{a} \cdot \hat{b} = 3 \] This simplifies to: \[ 2 + 2 \hat{a} \cdot \hat{b} = 3 \] ### Step 4: Solving for \(\hat{a} \cdot \hat{b}\) Rearranging the equation, we find: \[ 2 \hat{a} \cdot \hat{b} = 3 - 2 \] \[ 2 \hat{a} \cdot \hat{b} = 1 \] Thus: \[ \hat{a} \cdot \hat{b} = \frac{1}{2} \] ### Step 5: Finding the dot product \((2\hat{a} - 5\hat{b}) \cdot (3\hat{a} + \hat{b})\) We need to compute: \[ (2\hat{a} - 5\hat{b}) \cdot (3\hat{a} + \hat{b}) \] Using the distributive property of the dot product: \[ = 2\hat{a} \cdot 3\hat{a} + 2\hat{a} \cdot \hat{b} - 5\hat{b} \cdot 3\hat{a} - 5\hat{b} \cdot \hat{b} \] ### Step 6: Calculating each term Calculating each term: 1. \(2\hat{a} \cdot 3\hat{a} = 6\hat{a} \cdot \hat{a} = 6 \cdot 1 = 6\) 2. \(2\hat{a} \cdot \hat{b} = 2 \cdot \frac{1}{2} = 1\) 3. \(-5\hat{b} \cdot 3\hat{a} = -15\hat{b} \cdot \hat{a} = -15 \cdot \frac{1}{2} = -\frac{15}{2}\) 4. \(-5\hat{b} \cdot \hat{b} = -5 \cdot 1 = -5\) ### Step 7: Combining all terms Now, we combine all the calculated terms: \[ 6 + 1 - \frac{15}{2} - 5 \] Combining the constants: \[ = 7 - \frac{15}{2} - 5 \] \[ = 7 - 5 - \frac{15}{2} = 2 - \frac{15}{2} = \frac{4}{2} - \frac{15}{2} = -\frac{11}{2} \] ### Final Answer Thus, the value of \((2\hat{a} - 5\hat{b}) \cdot (3\hat{a} + \hat{b})\) is: \[ -\frac{11}{2} \]
Promotional Banner

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Units, Dimensions & Measurements)|30 Videos
  • RACE

    ALLEN|Exercise Basic Maths (KINEMATICS)|59 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Co-ordinate & Algebra)|37 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

If |hata-hatb|= sqrt2 then calculate the value of |hata-sqrt3hatb| .

If |hata-hatb|=sqrt(2) then calculate the value of |hat a+sqrt(3)hatb| .

If a_(1) and a_(2) are two non- collinear unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

If hat a and hatb are two unit vectors inclined at an angle theta , then sin(theta/2)

If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .

If hata, hatb and hatc are non-coplanar unti vectors such that [hata hatb hatc]=[hatb xx hatc" "hatc xx hata" "hata xx hatb] , then find the projection of hatb+hatc on hata xx hatb .

Let hata, hatb and hatc be three unit vectors such that hata=hatb+(hatb xx hatc) , then the possible value(s) of |hata+hatb+hatc|^(2) can be :

ALLEN-RACE-Basic Maths (VECTORS)
  1. If |hatAxxhatB|=-sqrt(3)hatA.hatB, then |hatA-hatB|=…………………..

    Text Solution

    |

  2. Find the torque of a force vecF=2hati+hatj+4hatk acting at the point v...

    Text Solution

    |

  3. What is the value of linear velocity ,if if omega=3hati-4hatj+hatkand ...

    Text Solution

    |

  4. The angle made by the vector vecA=hati+hatj with x-axis is

    Text Solution

    |

  5. Two vectors vecA=3hati+2hatj+hatk" and "vecB=5hatj-9hatj+Phatk are per...

    Text Solution

    |

  6. If the vectors (hati + hatj+hatk) and 3hati form two sides of a triang...

    Text Solution

    |

  7. The vactor projection of a vector 3hati+4hatkon y-axis is

    Text Solution

    |

  8. Consider two vectors vecF(1)=2hati+5hatk and vecF(2)=3hatj+4hatk. The ...

    Text Solution

    |

  9. The component of vector A=a(x)hati+a(y)hatj+a(z)hatk and the directioi...

    Text Solution

    |

  10. (vecA+2vecB).(2vecA-3vecB):-

    Text Solution

    |

  11. If vecA=3hati+4hatj and vecB=6hati+8hatj, select correct alternatives ...

    Text Solution

    |

  12. the angle between the vectors (hati+hatj) and (hatj+hatk) is

    Text Solution

    |

  13. vecA, vecB and vecC are vectors each having a unit magneitude. If ...

    Text Solution

    |

  14. The velocity of a particle is v=6hati+2hatj-2hatk The component of the...

    Text Solution

    |

  15. Two vectors vecA=4hati+alphahatj+2hatk" and "vecB=2hati+hatj+hatk are ...

    Text Solution

    |

  16. If vector hati+hatj-hatk" and "2hati+2hatj+lambdahatk are parallel tha...

    Text Solution

    |

  17. If vecAxxvecB=vecC then find out the correct one :-

    Text Solution

    |

  18. The position vectors of points A,B,C and D are A=3hati+4hatj+5hatk,B=4...

    Text Solution

    |

  19. If vector (hata+ 2hatb) is perpendicular to vector (5hata-4hatb), then...

    Text Solution

    |

  20. If hata" and "hatb are non-collinear unit vectors and if |hata+hatb|=s...

    Text Solution

    |