Home
Class 12
MATHS
lim(x rarr oo)(log x^(n)-[x])/([x]),n in...

`lim_(x rarr oo)(log x^(n)-[x])/([x]),n in N,quad `

Text Solution

Verified by Experts

`3x-7y^2+3xyz=3(2)-7(-4)^2+3(2)(-4)(1)`
`=6-7xx16-6xx4`
`=6-112-24`
`=6-136`
`=130`
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr oo)(log x^(n)-[x])/([x])=

lim_(x rarr o+)(log x^(n)-[x])/([x]), n being a natural number and [x] denotes greatest integer function.

lim_(x rarr oo)(x-log x)/(x+log x)

lim_(x rarr oo)x(log(x+1)-log x)=

lim_ (n rarr oo) (x ^ (n)) / (n!)

L=lim_(x rarr oo)((log x)/(x))^((1)/(x))

lim_ (x rarr oo) (log x) / (x ^ (n)) =

lim_(n rarr oo)(1+(x)/(n))^(n)

The value of lim_(x rarr oo)(x^(n)+nx^(n-1)+1)/(e^(|x|)),n in1 is

The value of lim_(x rarr oo)((ln x)^(2))/(x^(2)) is