Home
Class 12
MATHS
int(1)/(x^(2)+4x+5)dx...

int(1)/(x^(2)+4x+5)dx

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{1}{x^2 + 4x + 5} \, dx \), we will follow these steps: ### Step 1: Complete the square for the quadratic expression in the denominator. The expression \( x^2 + 4x + 5 \) can be rewritten by completing the square. \[ x^2 + 4x + 5 = (x^2 + 4x + 4) + 1 = (x + 2)^2 + 1 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(4x^(2)-4x+5)dx

int(x)/(x^(2)+4x+5)dx

int(x+1)/(x^(2)+4x-5)dx

int(x+1)/(x^(2)+4x+5)dx

Evaluate: int(x+1)/(x^(2)+4x+5)dx

int(dx)/(x^(2)-4x+5)

int_(0)^(1)(1)/(x^(2)+4x+5)dx =

If int(x+1)/((x^(2)+4x+5)^(2))dx=f(x)+g(x)+c where f(0)= (-3)/(10) , g(-1)= (-pi)/(8) and c is any arbitrary constant, if value of f(1)+g(sqrt(3)-2)=-(1)/(5)-(pi)/(k) , then k:

int(1)/(5+4x+x^(2))dx

int(1)/(5+4x-x^(2))dx=