Home
Class 12
CHEMISTRY
The conductivity of saturated solution o...

The conductivity of saturated solution of `Ba_(3) (PO_(4))_(2)` is `1.2 xx 10^(-5) Omega^(-1) cm^(-1)`. The limiting equivalent conductivities of `BaCl_(2), K_(3)PO_(4)` and KCl are `160, 140` and `100 Omega^(-1) cm^(2)eq^(-1)`, respectively. The solubility product of `Ba_(3)(PO_(4))_(2)` is

A

`10^(-5)`

B

`1.08 xx 10^(-23)`

C

`1.08 xx 10^(-25)`

D

`1.08 xx 10^(-27)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the solubility product (Ksp) of barium phosphate, \( Ba_3(PO_4)_2 \), using the given conductivity data and the limiting equivalent conductivities of the relevant salts. ### Step 1: Calculate the Limiting Equivalent Conductivity of \( Ba_3(PO_4)_2 \) The limiting equivalent conductivity (\( \Lambda^0_m \)) of \( Ba_3(PO_4)_2 \) can be calculated using the limiting equivalent conductivities of its constituent ions from the salts \( BaCl_2 \), \( K_3PO_4 \), and \( KCl \). 1. **Calculate \( \Lambda^0_m \) for each salt:** - For \( BaCl_2 \): \[ \Lambda^0_{BaCl_2} = 160 \, \Omega^{-1} cm^2 eq^{-1} \times 2 = 320 \, \Omega^{-1} cm^2 eq^{-1} \] - For \( K_3PO_4 \): \[ \Lambda^0_{K_3PO_4} = 140 \, \Omega^{-1} cm^2 eq^{-1} \times 3 = 420 \, \Omega^{-1} cm^2 eq^{-1} \] - For \( KCl \): \[ \Lambda^0_{KCl} = 100 \, \Omega^{-1} cm^2 eq^{-1} \times 1 = 100 \, \Omega^{-1} cm^2 eq^{-1} \] ### Step 2: Combine the Conductivities Using the contributions of the ions, we can express the limiting equivalent conductivity of \( Ba_3(PO_4)_2 \): \[ \Lambda^0_{Ba_3(PO_4)_2} = 3 \times \Lambda^0_{BaCl_2} + 2 \times \Lambda^0_{K_3PO_4} - 6 \times \Lambda^0_{KCl} \] Substituting the values: \[ \Lambda^0_{Ba_3(PO_4)_2} = 3 \times 320 + 2 \times 420 - 6 \times 100 \] Calculating: \[ = 960 + 840 - 600 = 1200 \, \Omega^{-1} cm^2 eq^{-1} \] ### Step 3: Calculate the Solubility Using the formula for the solubility (\( s \)): \[ s = \frac{k \times 1000}{\Lambda^0_m} \] Where \( k \) is the conductivity of the saturated solution: \[ k = 1.2 \times 10^{-5} \, \Omega^{-1} cm^{-1} \] Substituting the values: \[ s = \frac{1.2 \times 10^{-5} \times 1000}{1200} \] Calculating: \[ s = \frac{1.2 \times 10^{-2}}{1200} = 1 \times 10^{-5} \, mol/L \] ### Step 4: Calculate the Solubility Product (Ksp) The solubility product \( Ksp \) for \( Ba_3(PO_4)_2 \) can be expressed as: \[ Ksp = [Ba^{2+}]^3 [PO_4^{3-}]^2 \] Given that the dissociation of \( Ba_3(PO_4)_2 \) produces 3 moles of \( Ba^{2+} \) and 2 moles of \( PO_4^{3-} \): \[ Ksp = (3s)^3 (2s)^2 \] Substituting \( s = 1 \times 10^{-5} \): \[ Ksp = (3 \times 1 \times 10^{-5})^3 (2 \times 1 \times 10^{-5})^2 \] Calculating: \[ = (9 \times 10^{-15}) \times (4 \times 10^{-10}) = 36 \times 10^{-25} = 3.6 \times 10^{-24} \] ### Final Answer Thus, the solubility product \( Ksp \) of \( Ba_3(PO_4)_2 \) is: \[ Ksp = 1.08 \times 10^{-23} \]

To solve the problem, we need to find the solubility product (Ksp) of barium phosphate, \( Ba_3(PO_4)_2 \), using the given conductivity data and the limiting equivalent conductivities of the relevant salts. ### Step 1: Calculate the Limiting Equivalent Conductivity of \( Ba_3(PO_4)_2 \) The limiting equivalent conductivity (\( \Lambda^0_m \)) of \( Ba_3(PO_4)_2 \) can be calculated using the limiting equivalent conductivities of its constituent ions from the salts \( BaCl_2 \), \( K_3PO_4 \), and \( KCl \). 1. **Calculate \( \Lambda^0_m \) for each salt:** - For \( BaCl_2 \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Ca_(3)(PO_(4))_(2) is :

Ca_(3)(PO_(4))_(2) is :

The conductivity of a saturated solution of Ag_(3)PO_(4) is 9 xx 10^(-6) S m^(-1) and its equivalent conductivity is 1.50 xx 10^(-4) Sm^(2) "equivalent"^(-1) . Th K_(sp) of Ag_(3)PO_(4) is:-

Calculate the solubility product of Co_(2)[Fe(CN)_(6)] in water at 25^(@)C . Given, conductivity of saturated solutions of Co_(2)[Fe(CN)_(6)] is 2.06 xx 10^(-6) Omega^(-1)cm^(-1) and that of water used is 4.1 xx 10^(-7) Omega^(-1)cm^(-1) . The ionic molar conductivities of Co^(2+) and [Fe(CN)_(6)]^(4) are 86.0 Omega cm^(2)mol^(-1) and 444.0 Omega^(-1) cm^(2)mol^(-1) , respectivly.

The conductivity of 0*2M " KCl solution is " 3 Xx 10^(-2) ohm^(-1) cm^(-1) . Calculate its molar conductance.

The specific conductivity of CH_(3)COOH (0.001N) at 291 K is 4.09 xx 10^(-3)Omega^(-1)m^(-1) . Calculate its degree of dissociation if equivalent conductivities at infinite dilution of KCl, HCl and CH_(3)COOK are 0.01301, 0.03794 and 0.00956 Omega^(-1)m^(2)g. eq^(-1) respectively at 291K.

If the specific conductance of 1 M H_(2)SO_(4) solution is 26xx10^(-2)S cm^(2) , then the equivalent conductivity would be

The conductivity of a saturated solution of a sparingly soluble salt MX_2 is found to be 4 xx 10^(-5) Omega^(-1) cm^(-1)." If "lambda_(m)^(oo) ( M^(2+))=50 Omega^(-1) cm^(2) mol^(-1) and lambda^(oo) (X^(-))= 50 Omega^(-1) cm^(2) mol^(-1) , the solubility product of the salt is about

If conductivity of 0.1 mol/dm^3 solution of KCl is 1.3 * 10^(-2) S cm^(-1) at 298 K then its molar conductivity will be

Calculate the solubilty and solubility product of Co_(2) [Fe(CN)_(6)] is water at 25^(@)C from the following data: conductivity of a saturated solution of Co_(2)[Fe(CN)_(6)] is 2.06 xx 10^(-6) Omega^(-1) cm^(-1) and that of water used 4.1 xx 10^(-7) Omega^(-1) cm^(-1) . The ionic molar conductivites of Co^(2+) and Fe(CN)_(6)^(4-) are 86.0 Omega^(-1)cm^(-1) mol^(-1) and 44.0 Omega^(-1) cm^(-1) mol^(-1) .