Home
Class 12
MATHS
If f (x) = {x^(2)} - ({x}) ^(2), where ...

If ` f (x) = {x^(2)} - ({x}) ^(2)`, where `{*}` denotes the fractional part function, then

A

`1/2`

B

`1`

C

`3/2`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
B

Required area is `3/2` times the area of loop
`3/2xx2 int_(0)^(1)[(x+x^(2))-x]dx`
`1`
Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

Solve : x^(2) = {x} , where {x} represents the fractional part function.

If f(x) ={x} + sin ax (where { } denotes the fractional part function) is periodic, then

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractional part function then the find range of f(g(x))

If f(x) = {{:(x+{x}+x sin {x}",","for",x ne 0),(0",","for",x = 0):} , where {x} denotes the fractional part function, then

Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),( |sgn x|, -1 le x le 1),( {-x}, 1 lt x le 2):}, where {.} denotes the fractional part function. The total number of points of discontinuity of f (x) for x in[-2,2] is:

If f(x) = min({x}, {-x}) x in R , where {x} denotes the fractional part of x, then int_(-100)^(100)f(x)dx is