Home
Class 12
MATHS
If (1+2x+x^(2))^(n) = underset(r=0)overs...

If `(1+2x+x^(2))^(n) = underset(r=0)overset(2n)suma_(r)x^(r)`, then `a_(r) = `

A

`n+1`

B

`r+1`

C

`n+r+1`

D

`n+r`

Text Solution

Verified by Experts

The correct Answer is:
C

Coeff. `X^(3r)` in `[(1+x+x^(2))^(n)(1-x)^(n)]`
`implies` coeff. of `x^(3r)` in `[(a_(0)+a_(1)x+…a_(2)x^(2n))(n_(c_(0))-n_(c_(1)) xx……)]`
`.^(n)C_(r)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

"If" n in "and if "(1+ 4x +4 x^2)^n=underset(r=0)overset(2n)Sigma a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of 2 underset(r=0) overset (n) Sigma_(2r) is

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to