Home
Class 12
MATHS
If n be a natural number define polynomi...

If `n` be a natural number define polynomial `f_(n)(x)` of `n^(th)` degree as follows `f_(n)(costheta)cosntheta`
i.e. `f_(2)(x)=2x^(2)-1 f_(3)(x)=4x^(3)-3x_(1)`
Then
`(x+sqrt(x^(2)-1))^(10)+(x-sqrt(x^(2)-1s))^(10)` is equal to

A

`f_(10)(x)`

B

`f_(11)(x)+f_(9)(x)`

C

`f_(11)(x)`

D

`2f_(10)(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((x + \sqrt{x^2 - 1})^{10} + (x - \sqrt{x^2 - 1})^{10}\). ### Step-by-step Solution: 1. **Recognize the Structure**: Notice that the expression can be rewritten in terms of trigonometric functions. Let \( x = \cos \theta \). Then, we have: \[ \sqrt{x^2 - 1} = \sqrt{\cos^2 \theta - 1} = \sqrt{-\sin^2 \theta} = i \sin \theta \] Thus, we can rewrite the expression as: \[ (x + i \sin \theta)^{10} + (x - i \sin \theta)^{10} \] 2. **Use Euler's Formula**: We can express \( x + i \sin \theta \) and \( x - i \sin \theta \) using Euler's formula: \[ x + i \sin \theta = \cos \theta + i \sin \theta = e^{i\theta} \] \[ x - i \sin \theta = \cos \theta - i \sin \theta = e^{-i\theta} \] 3. **Raise to the Power of 10**: Now, we can raise both expressions to the power of 10: \[ (e^{i\theta})^{10} + (e^{-i\theta})^{10} = e^{10i\theta} + e^{-10i\theta} \] 4. **Simplify Using Cosine**: The sum of exponentials can be simplified using the cosine function: \[ e^{10i\theta} + e^{-10i\theta} = 2 \cos(10\theta) \] 5. **Relate Back to the Polynomial**: We know that the polynomial \( f_n(x) \) is defined in terms of cosine. Specifically, we have: \[ f_{10}(x) = 2 \cos(10\theta) \] Therefore, the expression simplifies to: \[ (x + \sqrt{x^2 - 1})^{10} + (x - \sqrt{x^2 - 1})^{10} = 2 f_{10}(x) \] ### Final Result: Thus, the final answer is: \[ 2 f_{10}(x) \]

To solve the problem, we need to evaluate the expression \((x + \sqrt{x^2 - 1})^{10} + (x - \sqrt{x^2 - 1})^{10}\). ### Step-by-step Solution: 1. **Recognize the Structure**: Notice that the expression can be rewritten in terms of trigonometric functions. Let \( x = \cos \theta \). Then, we have: \[ \sqrt{x^2 - 1} = \sqrt{\cos^2 \theta - 1} = \sqrt{-\sin^2 \theta} = i \sin \theta \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If n be a natural number define polynomial f_(n)(x) of n^(th) degree as follows f_(n)(costheta)cosntheta i.e. f_(2)(x)=2x^(2)-1 f_(3)(x)=4x^(3)-3x_(1) Then f_(6)(x) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

if f(x)=(x^(3)-3x^(2)+3x-x^(2)l n(e^((1)/(x^(2)))(x^(2)-x+2)))/(l n(x^(2)-x+2)) then f^('')(1) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for