Home
Class 12
MATHS
If n be a natural number define polynomi...

If `n` be a natural number define polynomial `f_(n)(x)` of `n^(th)` degree as follows `f_(n)(costheta)cosntheta`
i.e. `f_(2)(x)=2x^(2)-1 f_(3)(x)=4x^(3)-3x_(1)`
Then
`f_(6)(x)` is equal to

A

`36x^(6)-48x^(4)+18x^(2)-5`

B

`32x^(6)-48x^(4)+18x^(2)-1`

C

`36x^(6)-45x^(4)+18x^(2)-8`

D

`36x^(6)-48x^(4)+18x^(2)-7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the polynomial \( f_6(x) \) defined as \( f_n(\cos \theta) \cos n \theta \), we can use the recursive relationship derived from the properties of Chebyshev polynomials. ### Step-by-Step Solution: 1. **Understanding the Given Information**: We know: - \( f_2(x) = 2x^2 - 1 \) - \( f_3(x) = 4x^3 - 3x \) 2. **Using the Recursive Formula**: The recursive relationship for the polynomials is given by: \[ f_{n+1}(x) + f_{n-1}(x) = 2x f_n(x) \] We will use this to find \( f_4(x) \), \( f_5(x) \), and \( f_6(x) \). 3. **Finding \( f_4(x) \)**: Set \( n = 3 \): \[ f_4(x) + f_2(x) = 2x f_3(x) \] Substitute \( f_2(x) \) and \( f_3(x) \): \[ f_4(x) + (2x^2 - 1) = 2x(4x^3 - 3x) \] Simplifying the right side: \[ f_4(x) + 2x^2 - 1 = 8x^4 - 6x^2 \] Rearranging gives: \[ f_4(x) = 8x^4 - 6x^2 + 1 \] 4. **Finding \( f_5(x) \)**: Set \( n = 4 \): \[ f_5(x) + f_3(x) = 2x f_4(x) \] Substitute \( f_3(x) \) and \( f_4(x) \): \[ f_5(x) + (4x^3 - 3x) = 2x(8x^4 - 6x^2 + 1) \] Simplifying the right side: \[ f_5(x) + 4x^3 - 3x = 16x^5 - 12x^3 + 2x \] Rearranging gives: \[ f_5(x) = 16x^5 - 12x^3 + 2x - 4x^3 + 3x \] \[ f_5(x) = 16x^5 - 16x^3 + 5x \] 5. **Finding \( f_6(x) \)**: Set \( n = 5 \): \[ f_6(x) + f_4(x) = 2x f_5(x) \] Substitute \( f_4(x) \) and \( f_5(x) \): \[ f_6(x) + (8x^4 - 6x^2 + 1) = 2x(16x^5 - 16x^3 + 5x) \] Simplifying the right side: \[ f_6(x) + 8x^4 - 6x^2 + 1 = 32x^6 - 32x^4 + 10x^2 \] Rearranging gives: \[ f_6(x) = 32x^6 - 32x^4 + 10x^2 - 8x^4 + 6x^2 - 1 \] \[ f_6(x) = 32x^6 - 40x^4 + 16x^2 - 1 \] ### Final Answer: Thus, the polynomial \( f_6(x) \) is: \[ f_6(x) = 32x^6 - 40x^4 + 16x^2 - 1 \]

To find the polynomial \( f_6(x) \) defined as \( f_n(\cos \theta) \cos n \theta \), we can use the recursive relationship derived from the properties of Chebyshev polynomials. ### Step-by-Step Solution: 1. **Understanding the Given Information**: We know: - \( f_2(x) = 2x^2 - 1 \) - \( f_3(x) = 4x^3 - 3x \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If n be a natural number define polynomial f_(n)(x) of n^(th) degree as follows f_(n)(costheta)cosntheta i.e. f_(2)(x)=2x^(2)-1 f_(3)(x)=4x^(3)-3x_(1) Then (x+sqrt(x^(2)-1))^(10)+(x-sqrt(x^(2)-1s))^(10) is equal to

If f(x) = a(x^n +3), f(1) = 12, f(3) = 36 , then f(2) is equal to

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

f:N to N, where f(x)=x-(-1)^(x) , Then f is

if f(x)=(x^(3)-3x^(2)+3x-x^(2)l n(e^((1)/(x^(2)))(x^(2)-x+2)))/(l n(x^(2)-x+2)) then f^('')(1) is equal to

Let f(x)=(x-2)^2x^n, n in N Then f(x) has a minimum at

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f(x)=lim_(n->oo)[2x+4x^3+6x^5++2n x^(2n-1)] (0ltxlt1) then int f(x)dx is equal to:

If f(x) is polynomaial function of degree n, prove that int e^x f(x) dx=e^x[f(x)-f'(x)+f''(x)-f'''(x)+......+(-1)^n f^n (x)] where f^n(x)=(d^nf)/(dx^n)

Let f : N rarr N be defined as f(x) = 2x for all x in N , then f is