Home
Class 12
MATHS
If ax^(3)-cx+bge0AAxepsilonR^(+)-{0} whe...

If `ax^(3)-cx+bge0AAxepsilonR^(+)-{0}` where `a,b,cepsilonR^(+)`. Then the minimum value of `((27ab^(2))/(c^(3)))` is………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression \(\frac{27ab^2}{c^3}\) given the condition \(ax^3 - cx + b \geq 0\) for \(x \in \mathbb{R}^+\) and \(a, b, c \in \mathbb{R}^+\). ### Step-by-step Solution: 1. **Understanding the Condition**: The condition \(ax^3 - cx + b \geq 0\) implies that the cubic function \(f(x) = ax^3 - cx + b\) must be non-negative for all positive \(x\). 2. **Finding the Critical Points**: To find the critical points, we differentiate \(f(x)\): \[ f'(x) = 3ax^2 - c \] Setting \(f'(x) = 0\) gives: \[ 3ax^2 - c = 0 \implies x^2 = \frac{c}{3a} \implies x = \sqrt{\frac{c}{3a}} \] (We only consider the positive root since \(x \in \mathbb{R}^+\)). 3. **Evaluating the Function at the Critical Point**: Now, we evaluate \(f\) at \(x = \sqrt{\frac{c}{3a}}\): \[ f\left(\sqrt{\frac{c}{3a}}\right) = a\left(\sqrt{\frac{c}{3a}}\right)^3 - c\left(\sqrt{\frac{c}{3a}}\right) + b \] Simplifying this: \[ = a\left(\frac{c^{3/2}}{(3a)^{3/2}}\right) - c\left(\sqrt{\frac{c}{3a}}\right) + b \] \[ = \frac{ac^{3/2}}{3\sqrt{3}a^{3/2}} - \frac{c^{3/2}}{\sqrt{3a}} + b \] \[ = \frac{c^{3/2}}{3\sqrt{3}a^{1/2}} - \frac{c^{3/2}}{\sqrt{3a}} + b \] \[ = \frac{c^{3/2}}{3\sqrt{3}a^{1/2}} - \frac{3c^{3/2}}{3\sqrt{3a}} + b \] \[ = \frac{c^{3/2}}{3\sqrt{3}a^{1/2}} - \frac{3c^{3/2}}{3\sqrt{3a}} + b \] \[ = b - \frac{2c^{3/2}}{3\sqrt{3a}} \] 4. **Setting the Condition for Non-negativity**: For \(f\left(\sqrt{\frac{c}{3a}}\right) \geq 0\): \[ b - \frac{2c^{3/2}}{3\sqrt{3a}} \geq 0 \implies b \geq \frac{2c^{3/2}}{3\sqrt{3a}} \] 5. **Substituting into the Expression**: We want to minimize \(\frac{27ab^2}{c^3}\). Using the inequality from step 4: \[ b^2 \geq \left(\frac{2c^{3/2}}{3\sqrt{3a}}\right)^2 = \frac{4c^3}{27a} \] Thus, \[ \frac{27ab^2}{c^3} \geq \frac{27a \cdot \frac{4c^3}{27a}}{c^3} = 4 \] 6. **Conclusion**: Therefore, the minimum value of \(\frac{27ab^2}{c^3}\) is \(\boxed{4}\).

To solve the problem, we need to find the minimum value of the expression \(\frac{27ab^2}{c^3}\) given the condition \(ax^3 - cx + b \geq 0\) for \(x \in \mathbb{R}^+\) and \(a, b, c \in \mathbb{R}^+\). ### Step-by-step Solution: 1. **Understanding the Condition**: The condition \(ax^3 - cx + b \geq 0\) implies that the cubic function \(f(x) = ax^3 - cx + b\) must be non-negative for all positive \(x\). 2. **Finding the Critical Points**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of (a+b)^(3) is

If z=(3+7i)(a+ib) , where a , b in Z-{0} , is purely imaginery, then minimum value of |z|^(2) is

Ifa, b, c are positive real number such that ab^(2)c^(3) = 64 then minimum value of ((1)/(a) + (2)/(b) + (3)/(c)) is equal to

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of b^(3) is a. 108 b. 216 c. 432 d. 864

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of a^(3) is a. 108 b. 216 c. 432 d. 864