Home
Class 12
MATHS
If x,y,z are positive real number, such ...

If `x,y,z` are positive real number, such that `x+y+z=1`, if the minimum value of `(1+1/x)(1+1/y)(1+1/z)` is `K^(2)`, then `|K|` is ……….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression \((1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z})\) given that \(x + y + z = 1\) and \(x, y, z\) are positive real numbers. We will denote this minimum value as \(K^2\) and find \(|K|\). ### Step-by-Step Solution: 1. **Rewrite the Expression**: The expression can be rewritten as: \[ (1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z}) = \left(1 + \frac{y + z}{yz}\right)\left(1 + \frac{z + x}{zx}\right)\left(1 + \frac{x + y}{xy}\right) \] 2. **Apply AM-HM Inequality**: By the Arithmetic Mean-Harmonic Mean (AM-HM) inequality, we have: \[ \frac{1/x + 1/y + 1/z}{3} \geq \frac{3}{x + y + z} \] Since \(x + y + z = 1\), this simplifies to: \[ \frac{1/x + 1/y + 1/z}{3} \geq 3 \implies 1/x + 1/y + 1/z \geq 9 \] 3. **Add 3 to Each Term**: Now, we add 1 to each of the fractions: \[ (1 + \frac{1}{x}) + (1 + \frac{1}{y}) + (1 + \frac{1}{z}) = 3 + \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \geq 3 + 9 = 12 \] 4. **Use AM-GM Inequality**: By the AM-GM inequality: \[ \frac{(1 + \frac{1}{x}) + (1 + \frac{1}{y}) + (1 + \frac{1}{z})}{3} \geq \sqrt[3]{(1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z})} \] Thus, we have: \[ 4 \geq \sqrt[3]{(1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z})} \] 5. **Cubing Both Sides**: Cubing both sides gives: \[ 64 \geq (1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z}) \] 6. **Finding Minimum Value**: The minimum value of \((1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z})\) is 64. Therefore, we have: \[ K^2 = 64 \implies K = 8 \] 7. **Final Answer**: Thus, the magnitude of \(K\) is: \[ |K| = 8 \]

To solve the problem, we need to find the minimum value of the expression \((1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z})\) given that \(x + y + z = 1\) and \(x, y, z\) are positive real numbers. We will denote this minimum value as \(K^2\) and find \(|K|\). ### Step-by-Step Solution: 1. **Rewrite the Expression**: The expression can be rewritten as: \[ (1 + \frac{1}{x})(1 + \frac{1}{y})(1 + \frac{1}{z}) = \left(1 + \frac{y + z}{yz}\right)\left(1 + \frac{z + x}{zx}\right)\left(1 + \frac{x + y}{xy}\right) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y, z are non-negative real numbers satisfying x+y+z=1 , then the minimum value of ((1)/(x)+1)((1)/(y)+1)((1)/(z)+1) , is

If x+y+z=1 , then the least value of (1)/(x)+(1)/(y)+(1)/(z) , is

x,y,z are distinct real numbers such that x+1/y = y + 1/z =z + 1/x The value of x^(2)y^(2)z^(2) is………..

If x,y,z be three positive numbers such that xyz^(2) has the greatest value (1)/(64) , then the value of (1)/(x)+(1)/(y)+(1)/(z) is

If x, y, z are distinct positive numbers such that x+(1)/(y)=y+(1)/(z)=z+(1)/(x) , then the value of xyz is __________

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

If 2^x=3^y=6^(-z) find the value of (1/x+1/y+1/z)

Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y^4z^5 = (0.1)(600)^3 . Then x^3+y^3+z^3 is

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1