Home
Class 12
MATHS
Consider a function f(x)="sin"^(-1) (2x)...

Consider a function `f(x)="sin"^(-1) (2x)/(1+x^(2))+"cos"^(-1) (1-x^(2))/(1+x^(2))+"tan"^(-1) (2x)/(1-x^(2))-atan^(-1)x(aepsilonR)`, the value of a if `f(x)=0` for all `x`:

A

6

B

`-6`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the function \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) - a \tan^{-1}(x) \] is equal to 0 for all \( x \). ### Step 1: Substitute \( x = \tan(\theta) \) Let \( x = \tan(\theta) \). Then we can rewrite the components of \( f(x) \): - \( \frac{2x}{1+x^2} = \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \) - \( \frac{1-x^2}{1+x^2} = \frac{1-\tan^2(\theta)}{1+\tan^2(\theta)} = \cos(2\theta) \) - \( \frac{2x}{1-x^2} = \frac{2\tan(\theta)}{1-\tan^2(\theta)} = \tan(2\theta) \) Thus, we can rewrite \( f(x) \) as: \[ f(\tan(\theta)) = \sin^{-1}(\sin(2\theta)) + \cos^{-1}(\cos(2\theta)) + \tan^{-1}(\tan(2\theta)) - a \tan^{-1}(\tan(\theta)) \] ### Step 2: Simplify the function Using the properties of inverse trigonometric functions, we have: - \( \sin^{-1}(\sin(2\theta)) = 2\theta \) - \( \cos^{-1}(\cos(2\theta)) = 2\theta \) - \( \tan^{-1}(\tan(2\theta)) = 2\theta \) So, we can simplify \( f(\tan(\theta)) \): \[ f(\tan(\theta)) = 2\theta + 2\theta + 2\theta - a\theta = 6\theta - a\theta \] ### Step 3: Set the function equal to zero Since we want \( f(x) = 0 \) for all \( x \), we set: \[ 6\theta - a\theta = 0 \] ### Step 4: Factor out \( \theta \) Factoring out \( \theta \) gives us: \[ \theta(6 - a) = 0 \] ### Step 5: Solve for \( a \) For this equation to hold for all \( \theta \), we must have: \[ 6 - a = 0 \implies a = 6 \] ### Conclusion Thus, the value of \( a \) is: \[ \boxed{6} \]

To solve the problem, we need to find the value of \( a \) such that the function \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) - a \tan^{-1}(x) \] is equal to 0 for all \( x \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

The domain of the function f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) ((2-|x|)/(4)) + tan^(-1) ((2-|x|)/(4)) is

The function f (x) given by f(x) =sin^(-1)((2x)/(1+x^2)) is

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Consider the function f(x)={2x+3,xlt=1-x^2+6,x >1