Home
Class 12
MATHS
If lim(n->oo)[((2009)^2010)^n+((2010)^20...

If `lim_(n->oo)[((2009)^2010)^n+((2010)^2009)^n]^(1/n)` is equal to `a^b` where `a,b in N` then `a-b` is equal to:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{n \to \infty} \left[ (2009^{2010})^n + (2010^{2009})^n \right]^{\frac{1}{n}}, \] we will proceed step by step. ### Step 1: Rewrite the expression We can rewrite the expression inside the limit as follows: \[ \lim_{n \to \infty} \left[ (2009^{2010})^n + (2010^{2009})^n \right]^{\frac{1}{n}} = \lim_{n \to \infty} \left[ x^n + y^n \right]^{\frac{1}{n}}, \] where we define \( x = 2009^{2010} \) and \( y = 2010^{2009} \). ### Step 2: Identify the dominant term As \( n \) approaches infinity, the term with the larger base will dominate the sum. We need to compare \( x \) and \( y \): \[ x = 2009^{2010}, \quad y = 2010^{2009}. \] ### Step 3: Compare \( x \) and \( y \) To compare \( x \) and \( y \), we can take the ratio: \[ \frac{y}{x} = \frac{2010^{2009}}{2009^{2010}} = \left(\frac{2010}{2009}\right)^{2009} \cdot \frac{1}{2009}. \] Since \( \frac{2010}{2009} > 1 \), we can conclude that \( y > x \). ### Step 4: Simplify the limit Since \( y \) is greater than \( x \), we can simplify the limit: \[ \lim_{n \to \infty} \left[ x^n + y^n \right]^{\frac{1}{n}} = \lim_{n \to \infty} \left[ y^n \left( \left(\frac{x}{y}\right)^n + 1 \right) \right]^{\frac{1}{n}}. \] ### Step 5: Evaluate the limit This can be simplified further: \[ = \lim_{n \to \infty} y \left( \left(\frac{x}{y}\right)^n + 1 \right)^{\frac{1}{n}}. \] As \( n \to \infty \), \( \left(\frac{x}{y}\right)^n \to 0 \) because \( \frac{x}{y} < 1 \). Thus, we have: \[ \lim_{n \to \infty} \left( \left(\frac{x}{y}\right)^n + 1 \right)^{\frac{1}{n}} = 1. \] So, the limit simplifies to: \[ \lim_{n \to \infty} \left[ x^n + y^n \right]^{\frac{1}{n}} = y. \] ### Step 6: Substitute back for \( y \) Now substituting back for \( y \): \[ y = 2010^{2009}. \] ### Step 7: Express in the form \( a^b \) We need to express \( 2010^{2009} \) in the form \( a^b \). Here, we can take: \[ a = 2010, \quad b = 2009. \] ### Step 8: Calculate \( a - b \) Finally, we need to find \( a - b \): \[ a - b = 2010 - 2009 = 1. \] Thus, the final answer is: \[ \boxed{1}. \]

To solve the limit problem given by \[ \lim_{n \to \infty} \left[ (2009^{2010})^n + (2010^{2009})^n \right]^{\frac{1}{n}}, \] we will proceed step by step. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

(lim)_(n->oo)(1^2+2^2+3^2++n^2)/(n^3) is equal to a. 1 b . c. 1/3 d. 0

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)