Home
Class 12
MATHS
Maximum value of function f(x)=(sin^(-1)...

Maximum value of function `f(x)=(sin^(-1)(sinx)^(2)-sin^(-1)(sinx)` is:

A

`(pi)/4(pi+2)`

B

`(pi)/4(pi-2)`

C

`(pi)/4`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

a
`(sin^(-1) sin x-1//2)^(2)-1//4`
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(sinx)=x if

The function f(x)=sin^(-1)(sinx) , is

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The function f(x)=log((1+sinx)/(1-sinx)) is

The function f(x)=((1)/(2))^(sinx) , is

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1) is

The sum of the maximum and minimum values of the function f(x)=1/(1+(2cosx-4sinx)^2)i s

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is