Home
Class 12
MATHS
Given three non-zero, non-coplanar vecto...

Given three non-zero, non-coplanar vectors `veca, vecb and vecc`. `vecr_1= pveca + qvecb+ vecc and vecr_2= veca + pvecb+ qvecc`. If the vectors `vecr_1 + 2vecr_2 and 2 vecr_1 + vecr_2` are collinear, then `(p, q)` is

A

`(0,0)`

B

`(1,-1)`

C

`(-1,1)`

D

`(1,1)`

Text Solution

Verified by Experts

The correct Answer is:
D

d
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

A vectors vecr satisfies the equations vecr xx veca=vecb and vecr*veca=0 . Then

Find vector vecr if vecr.veca=m and vecrxxvecb=vecc, where veca.vecb!=0

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vcb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by veca, vecq and vecr is V_(2) , then V_(2):V_(1)=

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vecb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by vecp, vecq and vecr is V_(2) , then V_(2):V_(1)=

Let vec a , vec b ,vec c are three non- coplanar vectors such that vecr_(1)=veca + vec c , vecr_(2)= vec b+vec c -veca , vec r_(3) = vec c + vec a + vecb, vec r = 2 vec a - 3 vec b + 4 vec c. If vec r = lambda_(1)vecr_(1)+lambda_(2)vecr_(2)+lambda_(3)vecr_(3) , then

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z where veca,vecb,vecc are given non coplasnar vectors.

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb