Home
Class 12
MATHS
Consider on equation with x as variable ...

Consider on equation with `x` as variable `7sin3x-2sin9x=sec^(2)theta+4cosec^(2)theta` then the value of `15/(2pi)`[minimum positive root-maximum negative root] is:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 7\sin(3x) - 2\sin(9x) = \sec^2(\theta) + 4\csc^2(\theta) \), we will follow these steps: ### Step 1: Rewrite the Right Side We start by rewriting the right side of the equation using trigonometric identities: \[ \sec^2(\theta) = 1 + \tan^2(\theta) \quad \text{and} \quad \csc^2(\theta) = 1 + \cot^2(\theta) \] Thus, we can express the right side as: \[ \sec^2(\theta) + 4\csc^2(\theta) = (1 + \tan^2(\theta)) + 4(1 + \cot^2(\theta)) = 5 + \tan^2(\theta) + 4\cot^2(\theta) \] ### Step 2: Substitute \( y = \sin(3x) \) Let \( y = \sin(3x) \). The sine function has a range of \([-1, 1]\), so \( y \) will also lie within this range. The left side of the equation becomes: \[ 7y - 2\sin(9x) = 7y - 2(3y - 4y^3) = 7y - 6y + 8y^3 = y + 8y^3 \] Thus, we rewrite the equation as: \[ y + 8y^3 = 5 + \tan^2(\theta) + 4\cot^2(\theta) \] ### Step 3: Analyze the Left Side The left side of the equation \( y + 8y^3 \) is a cubic function in \( y \). To find the minimum and maximum values, we can analyze its behavior: - The function \( y + 8y^3 \) will be minimized and maximized at the endpoints of the interval \([-1, 1]\). ### Step 4: Calculate Minimum and Maximum Values 1. **Minimum Value:** \[ f(-1) = -1 + 8(-1)^3 = -1 - 8 = -9 \] 2. **Maximum Value:** \[ f(1) = 1 + 8(1)^3 = 1 + 8 = 9 \] ### Step 5: Set Up the Equation for Roots The equation \( y + 8y^3 = 5 + \tan^2(\theta) + 4\cot^2(\theta) \) will have solutions if: \[ -9 \leq 5 + \tan^2(\theta) + 4\cot^2(\theta) \leq 9 \] ### Step 6: Find Roots 1. **Minimum Positive Root:** The minimum positive root occurs when \( \sin(3x) = 1 \): \[ 3x = \frac{\pi}{2} \implies x = \frac{\pi}{6} \] 2. **Maximum Negative Root:** The maximum negative root occurs when \( \sin(3x) = -1 \): \[ 3x = -\frac{\pi}{2} \implies x = -\frac{\pi}{6} \] ### Step 7: Calculate the Value Now, we need to find: \[ \frac{15}{2\pi} \left( \text{minimum positive root} - \text{maximum negative root} \right) \] Substituting the roots: \[ \frac{15}{2\pi} \left( \frac{\pi}{6} - \left(-\frac{\pi}{6}\right) \right) = \frac{15}{2\pi} \left( \frac{\pi}{6} + \frac{\pi}{6} \right) = \frac{15}{2\pi} \left( \frac{2\pi}{6} \right) = \frac{15}{2\pi} \cdot \frac{\pi}{3} = \frac{15}{6} = \frac{5}{2} \] ### Final Answer Thus, the value is: \[ \boxed{5} \]

To solve the equation \( 7\sin(3x) - 2\sin(9x) = \sec^2(\theta) + 4\csc^2(\theta) \), we will follow these steps: ### Step 1: Rewrite the Right Side We start by rewriting the right side of the equation using trigonometric identities: \[ \sec^2(\theta) = 1 + \tan^2(\theta) \quad \text{and} \quad \csc^2(\theta) = 1 + \cot^2(\theta) \] Thus, we can express the right side as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

find the value sin^(2)theta*cosec theta =?

The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

If sin theta+ cosec theta =2, then the value of sin^8 theta + cosec^8 theta is equal to

If sin theta+cosec theta=2 , then find the value of sin^(20)theta+cosec^(20)theta .

Solve the equation for 0 le x le 2pi. 2 sin ^(2) theta = 3 cos theta

Find the minimum value of sec^2 theta + cosec^2 theta - 4.

The least value of 18 sin^(2)theta+2 cosec^(2)theta-3 is (a) -15 (b) -12 (c) 0 (d) 9

Solve the equation : 2sin^(2)theta+sin^(2)theta=2 for theta in (-pi,pi) .

If 4 sin^(2) x + cosec^(2)x, a , sin^(2)y+4 cosec^(2)y are in AP, then minimum value of (2a) is

Find the number of roots of the equation 16 sec^(3) theta - 12 tan^(2) theta - 4 sec theta =9 in interval (-pi,pi)