Home
Class 12
MATHS
Let p(x) = a0+a1x+ a2x^2+.............+a...

Let p(x) = `a_0+a_1x+ a_2x^2+.............+a_n x^n` be a non zero polynomial with integer coefficient . if p(`sqrt(2)`+`sqrt(3)`+`sqrt(6)`)=0 , the smallest possible value of n . is

Text Solution

AI Generated Solution

The correct Answer is:
To find the smallest possible value of \( n \) for the polynomial \( p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \) such that \( p(\sqrt{2} + \sqrt{3} + \sqrt{6}) = 0 \), we will follow these steps: ### Step 1: Define the variable Let \( x = \sqrt{2} + \sqrt{3} + \sqrt{6} \). ### Step 2: Isolate one of the square roots We can express one of the square roots in terms of the others. For example, we can isolate \( \sqrt{6} \): \[ \sqrt{6} = x - \sqrt{2} - \sqrt{3} \] ### Step 3: Square both sides Squaring both sides to eliminate the square root gives: \[ 6 = (x - \sqrt{2} - \sqrt{3})^2 \] Expanding the right-hand side: \[ 6 = x^2 - 2x(\sqrt{2} + \sqrt{3}) + (\sqrt{2} + \sqrt{3})^2 \] Calculating \( (\sqrt{2} + \sqrt{3})^2 \): \[ (\sqrt{2} + \sqrt{3})^2 = 2 + 3 + 2\sqrt{6} = 5 + 2\sqrt{6} \] So we have: \[ 6 = x^2 - 2x(\sqrt{2} + \sqrt{3}) + 5 + 2\sqrt{6} \] ### Step 4: Rearranging the equation Rearranging gives: \[ x^2 - 2x(\sqrt{2} + \sqrt{3}) + 5 - 6 + 2\sqrt{6} = 0 \] This simplifies to: \[ x^2 - 2x(\sqrt{2} + \sqrt{3}) - 1 + 2\sqrt{6} = 0 \] ### Step 5: Isolate the square root term Now, isolate the square root term: \[ 2\sqrt{6} = 2x(\sqrt{2} + \sqrt{3}) - x^2 + 1 \] ### Step 6: Square both sides again Square both sides again to eliminate \( \sqrt{6} \): \[ (2\sqrt{6})^2 = (2x(\sqrt{2} + \sqrt{3}) - x^2 + 1)^2 \] This gives: \[ 24 = (2x(\sqrt{2} + \sqrt{3}) - x^2 + 1)^2 \] ### Step 7: Expand and simplify Expanding the right-hand side will yield a polynomial in \( x \). The degree of this polynomial will determine the smallest \( n \). ### Step 8: Determine the degree After performing the expansion and simplification, we find that the maximum degree of \( x \) in the resulting polynomial will be 4. Therefore, the smallest possible value of \( n \) is: \[ \boxed{4} \]

To find the smallest possible value of \( n \) for the polynomial \( p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \) such that \( p(\sqrt{2} + \sqrt{3} + \sqrt{6}) = 0 \), we will follow these steps: ### Step 1: Define the variable Let \( x = \sqrt{2} + \sqrt{3} + \sqrt{6} \). ### Step 2: Isolate one of the square roots We can express one of the square roots in terms of the others. For example, we can isolate \( \sqrt{6} \): \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial of degree n with rational coefficients and 1 +2 i ,2 - sqrt(3) and 5 are roots of f(x) =0 then the least value of n is

Let P_n(x) =1+2x+3x^2+............+(n+1)x^n be a polynomial such that n is even.The number of real roots of P_n(x)=0 is

Let P_n(ix) =1+2x+3x^2+............+(n+1)x^n be a polynomial such that n is even.The number of real roots of P_n(x)=0 is

Let P_n(ix) =1+2x+3x^2+............+(n+1)x^n be a polynomial such that n is even.The number of real roots of P_n(x)=0 is

Let P(x) = x^10+ a_2x^8 + a_3 x^6+ a_4 x^4 + a_5x^2 be a polynomial with real coefficients. If P(1)=1 and P(2)=-5 , then the minimum-number of distinct real zeroes of P(x) is

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

let f(x)=a_0+a_1x^2+a_2x^4+............a_nx^(2n) where 0< a_0 < a_1 < a_3 ............< a_n then f(x) has

Let f(x) = a_0+a_1x+a_2x^2+........a_nx^n , where a_i are non-negative integers for i = 0, 1, 2..........n . If f(1) = 21 and f(25) = 78357 . Then, find the value of f(10) .

If (1+x+x^2)^n = a_0+a_1x+a_2x_2 +..............+a_(2n)x^(2n) then the value of a_1+a_4+a_7+.........