Home
Class 12
MATHS
Let f(x) = cos2x.cos4x.cos6x.cos8x.cos10...

Let `f(x) = cos2x.cos4x.cos6x.cos8x.cos10x` then `lim_(x ->0) (1 - (f(x))^3)/(55sin^2x)` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the function: \[ f(x) = \cos(2x) \cos(4x) \cos(6x) \cos(8x) \cos(10x) \] We need to evaluate: \[ \lim_{x \to 0} \frac{1 - (f(x))^3}{55 \sin^2 x} \] ### Step 1: Evaluate \( f(0) \) First, we find \( f(0) \): \[ f(0) = \cos(0) \cos(0) \cos(0) \cos(0) \cos(0) = 1 \] ### Step 2: Rewrite the limit Since \( f(0) = 1 \), we can rewrite the limit as: \[ \lim_{x \to 0} \frac{1 - (f(x))^3}{55 \sin^2 x} = \lim_{x \to 0} \frac{1 - f(x)^3}{55 \sin^2 x} \] ### Step 3: Use the identity for cubes We can use the identity \( a^3 - b^3 = (a-b)(a^2 + ab + b^2) \): \[ 1 - f(x)^3 = (1 - f(x))(1 + f(x) + f(x)^2) \] Thus, we can rewrite the limit: \[ \lim_{x \to 0} \frac{(1 - f(x))(1 + f(x) + f(x)^2)}{55 \sin^2 x} \] ### Step 4: Substitute \( \sin^2 x \) We know that \( \sin^2 x \) can be approximated as \( x^2 \) near \( x = 0 \): \[ \sin^2 x \approx x^2 \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{(1 - f(x))(1 + f(x) + f(x)^2)}{55 x^2} \] ### Step 5: Evaluate \( 1 - f(x) \) Next, we need to evaluate \( 1 - f(x) \): Using the approximation \( 1 - \cos \theta \approx \frac{\theta^2}{2} \) for small \( \theta \): \[ 1 - f(x) = 1 - \left(\cos(2x) \cos(4x) \cos(6x) \cos(8x) \cos(10x)\right) \] We can expand \( f(x) \) using the small angle approximation for each cosine term: \[ \cos(kx) \approx 1 - \frac{(kx)^2}{2} \] Thus: \[ f(x) \approx \left(1 - \frac{(2x)^2}{2}\right)\left(1 - \frac{(4x)^2}{2}\right)\left(1 - \frac{(6x)^2}{2}\right)\left(1 - \frac{(8x)^2}{2}\right)\left(1 - \frac{(10x)^2}{2}\right) \] ### Step 6: Calculate \( 1 - f(x) \) Multiplying these approximations, we find that: \[ f(x) \approx 1 - \left(\frac{2^2 + 4^2 + 6^2 + 8^2 + 10^2}{2}\right)x^2 \] Calculating the sum of squares: \[ 2^2 + 4^2 + 6^2 + 8^2 + 10^2 = 4 + 16 + 36 + 64 + 100 = 220 \] Thus: \[ f(x) \approx 1 - \frac{220}{2} x^2 = 1 - 110 x^2 \] So: \[ 1 - f(x) \approx 110 x^2 \] ### Step 7: Substitute back into the limit Now substituting back into our limit: \[ \lim_{x \to 0} \frac{110 x^2 (1 + f(x) + f(x)^2)}{55 x^2} \] The \( x^2 \) terms cancel out: \[ \lim_{x \to 0} \frac{110 (1 + f(x) + f(x)^2)}{55} \] ### Step 8: Evaluate the limit As \( x \to 0 \), \( f(x) \to 1 \): \[ 1 + f(x) + f(x)^2 \to 1 + 1 + 1 = 3 \] Thus, the limit becomes: \[ \frac{110 \cdot 3}{55} = \frac{330}{55} = 6 \] ### Final Answer The final answer is: \[ \boxed{6} \]

To solve the limit problem, we start with the function: \[ f(x) = \cos(2x) \cos(4x) \cos(6x) \cos(8x) \cos(10x) \] We need to evaluate: \[ \lim_{x \to 0} \frac{1 - (f(x))^3}{55 \sin^2 x} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

lim_(x to 0) (sin x + cos 3x)^(2//x) =

lim_(x to 0) (cos 2x-1)/(cos x-1)

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for all x we have