Home
Class 12
MATHS
Find the absolute value of (tanAtan2A)+(...

Find the absolute value of `(tanAtan2A)+(tan2A tan4A)+(tan4A tanA)` where `A=(2pi)/7`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the absolute value of the expression: \[ \tan A \tan 2A + \tan 2A \tan 4A + \tan 4A \tan A \] where \( A = \frac{2\pi}{7} \). ### Step 1: Substitute the values of \( A \), \( 2A \), and \( 4A \) First, we calculate the angles: - \( A = \frac{2\pi}{7} \) - \( 2A = \frac{4\pi}{7} \) - \( 4A = \frac{8\pi}{7} \) ### Step 2: Rewrite the expression using the tangent function The expression can be rewritten as: \[ \tan\left(\frac{2\pi}{7}\right) \tan\left(\frac{4\pi}{7}\right) + \tan\left(\frac{4\pi}{7}\right) \tan\left(\frac{8\pi}{7}\right) + \tan\left(\frac{8\pi}{7}\right) \tan\left(\frac{2\pi}{7}\right) \] ### Step 3: Use the property of tangent We know that: \[ \tan\left(\frac{8\pi}{7}\right) = \tan\left(\pi + \frac{\pi}{7}\right) = \tan\left(\frac{\pi}{7}\right) \] Thus, we can rewrite the expression as: \[ \tan\left(\frac{2\pi}{7}\right) \tan\left(\frac{4\pi}{7}\right) + \tan\left(\frac{4\pi}{7}\right) \tan\left(\frac{\pi}{7}\right) + \tan\left(\frac{\pi}{7}\right) \tan\left(\frac{2\pi}{7}\right) \] ### Step 4: Use the tangent addition formula We can use the identity for the sum of tangents: \[ \tan A \tan B + \tan B \tan C + \tan C \tan A = \tan A \tan B \tan C \] where \( A = \frac{2\pi}{7} \), \( B = \frac{4\pi}{7} \), and \( C = \frac{\pi}{7} \). ### Step 5: Calculate the product of tangents Using the identity, we find: \[ \tan\left(\frac{2\pi}{7}\right) \tan\left(\frac{4\pi}{7}\right) \tan\left(\frac{\pi}{7}\right) = \sqrt{7} \] ### Step 6: Substitute back into the expression Thus, we have: \[ \tan\left(\frac{2\pi}{7}\right) \tan\left(\frac{4\pi}{7}\right) + \tan\left(\frac{4\pi}{7}\right) \tan\left(\frac{\pi}{7}\right) + \tan\left(\frac{\pi}{7}\right) \tan\left(\frac{2\pi}{7}\right) = \sqrt{7} \] ### Step 7: Find the absolute value Finally, we need the absolute value of the result: \[ \text{Absolute value} = |\sqrt{7}| \] Thus, the final answer is: \[ \boxed{\sqrt{7}} \]

To solve the problem, we need to find the absolute value of the expression: \[ \tan A \tan 2A + \tan 2A \tan 4A + \tan 4A \tan A \] where \( A = \frac{2\pi}{7} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of: tan3A-tan2A-tanA =

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of : tan^(-1){tan(-(7pi)/8)}

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

Find the value of the following: tan^(-1)(tan((7pi)/6))

Given that tan A = (1)/(5). find the values of tan 2 A, tan 4A and tan (45 ^(@) - 4A).

Prove that: tanA(1+sec2A)=tan2A

In a right triangle ABC , right angled at B , the ratio of A BtoA C is 1:sqrt(2) . Find the values of (2tanA)/(1+tan^2A) and (ii) (2tanA)/(1-tan^2A)