Home
Class 12
MATHS
If ((x-3)^((-|x|)/x) sqrt((x-4)^(2))(17-...

If `((x-3)^((-|x|)/x) sqrt((x-4)^(2))(17-x))/(sqrt(-x)(-x^(2)+x-1)(|x|-32))lt0` then no. of integers `x` satisfying the inequality is:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(x-3)^{-\frac{|x|}{x}} \sqrt{(x-4)^{2}}(17-x)}{\sqrt{-x}(-x^{2}+x-1)(|x|-32)} < 0, \] we will analyze each component step by step. ### Step 1: Analyze the components of the inequality 1. **Numerator:** - \( (x-3)^{-\frac{|x|}{x}} \) - \( \sqrt{(x-4)^{2}} = |x-4| \) - \( (17-x) \) 2. **Denominator:** - \( \sqrt{-x} \) - \( -x^{2}+x-1 \) - \( |x|-32 \) ### Step 2: Determine the conditions for the numerator and denominator **Numerator:** - \( (x-3)^{-\frac{|x|}{x}} \) is defined for \( x \neq 3 \) and is positive if \( x > 3 \) or \( x < 0 \) (since \(-\frac{|x|}{x}\) will be negative for positive \(x\)). - \( |x-4| \) is positive for \( x \neq 4 \). - \( (17-x) \) is positive for \( x < 17 \). **Denominator:** - \( \sqrt{-x} \) is defined for \( x < 0 \). - \( -x^{2}+x-1 = -(x^{2}-x+1) \) is always negative since the discriminant \(1 - 4 < 0\). - \( |x|-32 \) is negative for \( -32 < x < 32 \). ### Step 3: Combine the conditions 1. **From the numerator:** - \( x < 17 \) and \( x \neq 3 \), \( x \neq 4 \). 2. **From the denominator:** - \( x < 0 \) (from \(\sqrt{-x}\)). - \( |x|-32 < 0 \) implies \( -32 < x < 32 \) (but we are only considering \(x < 0\)). ### Step 4: Find the valid range for \(x\) From the conditions, we have: - \( x < 0 \) - \( x < 17 \) - \( x \neq 3 \) - \( x \neq 4 \) The most restrictive condition is \( x < 0 \). Thus, we need to find integers in the range \( -32 < x < 0 \). ### Step 5: Count the integers The integers satisfying \( -32 < x < 0 \) are: \[ -31, -30, -29, \ldots, -1. \] This gives us a total of \(31\) integers. ### Final Answer Thus, the number of integers \( x \) satisfying the inequality is: \[ \boxed{31}. \]

To solve the inequality \[ \frac{(x-3)^{-\frac{|x|}{x}} \sqrt{(x-4)^{2}}(17-x)}{\sqrt{-x}(-x^{2}+x-1)(|x|-32)} < 0, \] we will analyze each component step by step. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integers satisfying the inequality is x/(x+6)<=1/x

The number of integers that satisfy the inequality x^(2)+48lt16x is

Number of integers satisfying the inequality log_((x+3))(x^2-x) lt 1 is

Solve sqrt((x-3)(2-x)) lt sqrt(4x^(2)+12x+11) .

Find the number of positive integers satisfying the inequality x^(2) -10x+16lt 0.

Find the number of positive integers satisfying the inequality x^(2) -10x+16lt 0.

tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

If ((x^(2)-1)(x+2)(x+1)^(2))/((x-2))lt0 , then complete solution set of inequation is

If sqrt((2x^(2)+x+2)/(x^(2)+3x+1))+2"."sqrt((x^(2)+3x+1)/(2x^(2)+x+2))-3=0 , find x.