Home
Class 12
MATHS
If alpha+beta, gamma epsilon R^(+) such ...

If `alpha+beta, gamma epsilon R^(+)` such that `alpha gamma =1/(beta)` then maximum value of `alpha^(beta+gamma), .beta^(beta+gamma).gamma^(alpha+beta)` is_____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression \( \alpha^{\beta + \gamma} \cdot \beta^{\beta + \gamma} \cdot \gamma^{\alpha + \beta} \) given the condition \( \alpha \gamma = \frac{1}{\beta} \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the condition \( \alpha \gamma = \frac{1}{\beta} \). This can be rearranged to express \( \beta \) in terms of \( \alpha \) and \( \gamma \): \[ \beta = \frac{1}{\alpha \gamma} \] 2. **Assuming Order of Variables**: We can assume without loss of generality that \( \alpha \geq \beta \geq \gamma \). This helps us analyze the behavior of the variables under the given constraints. 3. **Analyzing the Variables**: From the condition \( \alpha \gamma = \frac{1}{\beta} \), we can infer: - Since \( \beta \) is positive, \( \alpha \) must be greater than or equal to 1 (to keep \( \beta \) positive). - \( \gamma \) must be less than or equal to 1 (to satisfy the equation). 4. **Rewriting the Expression**: We rewrite the expression we want to maximize: \[ E = \alpha^{\beta + \gamma} \cdot \beta^{\beta + \gamma} \cdot \gamma^{\alpha + \beta} \] 5. **Using AM-GM Inequality**: To find the maximum value, we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. We consider the terms: \[ \frac{\beta + \gamma + \alpha + \beta + \gamma + \alpha + \beta + \gamma}{3} \geq \sqrt[3]{\alpha^{\beta + \gamma} \cdot \beta^{\beta + \gamma} \cdot \gamma^{\alpha + \beta}} \] This implies: \[ \frac{2(\alpha + \beta + \gamma)}{3} \geq \sqrt[3]{E} \] 6. **Finding Maximum Value**: Given the constraints on \( \alpha \) and \( \gamma \), we can find that the maximum value of \( E \) occurs when \( \alpha = 1 \), \( \beta = 1 \), and \( \gamma = 1 \). Substituting these values: \[ E = 1^{1 + 1} \cdot 1^{1 + 1} \cdot 1^{1 + 1} = 1 \] 7. **Conclusion**: Therefore, the maximum value of the expression \( \alpha^{\beta + \gamma} \cdot \beta^{\beta + \gamma} \cdot \gamma^{\alpha + \beta} \) is: \[ \boxed{1} \]

To solve the problem, we need to find the maximum value of the expression \( \alpha^{\beta + \gamma} \cdot \beta^{\beta + \gamma} \cdot \gamma^{\alpha + \beta} \) given the condition \( \alpha \gamma = \frac{1}{\beta} \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the condition \( \alpha \gamma = \frac{1}{\beta} \). This can be rearranged to express \( \beta \) in terms of \( \alpha \) and \( \gamma \): \[ \beta = \frac{1}{\alpha \gamma} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha + beta + gamma = pi , show that : tan (beta+gamma-alpha) + tan (gamma+alpha-beta) + tan (alpha+beta-gamma) = tan (beta+gamma-alpha) tan (gamma+alpha-beta) tan (alpha+beta-gamma)

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =