Home
Class 12
MATHS
If I(m) = int0^pi ln(1-2m cos x + m^2)dx...

If `I(m) = int_0^pi ln(1-2m cos x + m^2)dx`, then I(1)=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I(m) = \int_0^\pi \ln(1 - 2m \cos x + m^2) \, dx \) at \( m = 1 \). ### Step-by-Step Solution: 1. **Substituting \( m = 1 \)**: \[ I(1) = \int_0^\pi \ln(1 - 2(1) \cos x + 1^2) \, dx \] Simplifying the expression inside the logarithm: \[ I(1) = \int_0^\pi \ln(1 - 2 \cos x + 1) \, dx = \int_0^\pi \ln(2 - 2 \cos x) \, dx \] 2. **Factoring out the constant**: We can factor out the 2 from the logarithm: \[ I(1) = \int_0^\pi \ln(2(1 - \cos x)) \, dx = \int_0^\pi \ln(2) \, dx + \int_0^\pi \ln(1 - \cos x) \, dx \] Since \( \ln(2) \) is a constant, we can compute: \[ \int_0^\pi \ln(2) \, dx = \ln(2) \cdot \pi \] 3. **Evaluating \( \int_0^\pi \ln(1 - \cos x) \, dx \)**: We can use the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \): \[ \int_0^\pi \ln(1 - \cos x) \, dx = \int_0^\pi \ln(2 \sin^2\left(\frac{x}{2}\right)) \, dx \] This can be split into two integrals: \[ = \int_0^\pi \ln(2) \, dx + \int_0^\pi \ln(\sin^2\left(\frac{x}{2}\right)) \, dx \] The first part is: \[ \int_0^\pi \ln(2) \, dx = \ln(2) \cdot \pi \] The second part can be simplified: \[ = 2 \int_0^\pi \ln(\sin\left(\frac{x}{2}\right)) \, dx \] Using the known result \( \int_0^\pi \ln(\sin x) \, dx = -\pi \ln(2) \), we find: \[ \int_0^\pi \ln(\sin\left(\frac{x}{2}\right)) \, dx = -\pi \ln(2) \quad \text{(as \( \sin\left(\frac{x}{2}\right) \) is half the angle)} \] 4. **Combining the results**: Thus, we have: \[ \int_0^\pi \ln(1 - \cos x) \, dx = \pi \ln(2) - \pi \ln(2) = 0 \] 5. **Final Result**: Therefore, combining everything: \[ I(1) = \ln(2) \cdot \pi + 0 = \pi \ln(2) \] ### Conclusion: The final answer is: \[ \boxed{\pi \ln(2)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find I=int_0^pi ln(1+cosx)dx

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I_1=int_0^(3pi) (cos^2x) dx and I_2 =int_0^pi (cos^2x) dx then (a) I_1=I_2 (2) I_1=2 I_2 (3) I_1=5I_2 (4) I_1=3I_2

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

int_(0)^(pi) cos 2x . Log (sinx) dx