Home
Class 12
PHYSICS
Figure shows a metal rod of uniform cros...

Figure shows a metal rod of uniform cross section `A`, with variable thermal conductivity given by `k(x)=k_(0) sec((pi)/(6L)x)`. If the end `A` is maintained at temperature `T_(0)`, the rod carries a thermal current `I_(0)` (from `B` to `A`) in steady state and `(I_(0)L)/(k_(0)AT_(0))=(pi)/3`, find the temperature of the end `B` of the rod. Let's say this temperature is `k T_(0)`, find integer value `k`.

Text Solution

Verified by Experts

The correct Answer is:
2

`I_(0)=(k_(0)A)/(cos((pi)/(6L)x)dx)`
`impliesT=T_(0)+(6I_(0)L)/(pik_(0)A)sin((pi)/(6Lx))`
`impliesT=2T_(0)` at `x=L`
Promotional Banner

Similar Questions

Explore conceptually related problems

A rod of uniform cross-section but non-uniform thermal conductivity which vary as k=k_(0)(x^(2))/(L^(2))(1lexleL) (as shown in figure) is kept between fixed temperature difference for a long time. Select the correct options(s)

A rod of length l and cross-section area A has a variable thermal conductivity given by K = alpha T, where alpha is a positive constant and T is temperature in kelvin. Two ends of the rod are maintained at temperature T_(1) and T_(2) (T_(1)gtT_(2)) . Heat current flowing through the rod will be

Four identical rods AB, CD, CF and DE are joined as shown in figure. The length, cross-sectional area and thermal conductivity of each rod are l, A and K respectively. The ends A, E and F are maintained at temperature T_(1) , T_(2) and T_(3) respectively. Assuming no loss of heat to the atmosphere, find the temperature at B.

Four identical rods AB, CD, CF and DE are joined as shown in figure. The length, cross-sectional area and thermal conductivity of each rod are l, A and K respectively. The ends A, E and F are maintained at temperature T_(1) , T_(2) and T_(3) respectively. Assuming no loss of heat to the atmosphere, find the temperature at B .

A rod of length l and cross sectional area A has a variable conductivity given by K=alphaT , where alpha is a positive constant T is temperatures in Kelvin. Two ends of the rod are maintained at temperatures T_1 and T_2(T_1gtT_2) . Heat current flowing through the rod will be

Two bars of same length and same cross-sectional area but of different thermal conductivites K_(1) and K_(2) are joined end to end as shown in the figure. One end of the compound bar it is at temperature T_(1) and the opposite end at temperature T_(2) (where T_(1) gt T_(2) ). The temperature of the junction is

Five rods of same dimensions are arranged as shown in the figure. They have thermal conductivities K _(1) , K_(2) , K _(3) , K_( 4) and K_( 5) . When points A and B are maintained at different temperatures, no heat flows through the central rod if

Two rods of similar area of cross section and length are joined as shown in the figure. The ratio of their thermal conductivity is 2:3. The free ends are maintained at 100^(@)C and 0^(@)C respectivley. THE temperature at junction in steady state is

Three rods each of same length and cross - section are joined in series. The thermal conductivity of the materials are K , 2K and 3K respectively. If one end is kept at 200^@C and the other at 100^@C . What would be the temperature of the junctions in the steady state? Assume that no heat is lost due to radiation from the sides of the rods.

Two ends of a rod of uniform cross sectional area are kept at temperature 3T_(0) and T_(0) as shown. Thermal conductivity of rod varies as k=alphaT , (where alpha is a constant and T is absolute temperature). In steady state, the temperature of the middle section of the rod is