Home
Class 12
MATHS
Consider a function f : R -> R; f(x^2 +y...

Consider a function `f : R -> R; f(x^2 +yf(z)) = xf(x) + zf(y), AA x,y,z in R` If `f(x) = 0,AA x in R` is not considered a part of solution set, then

A

`f(alpha) lt alpha^(4)AA alpha epsilon(0,1)`

B

`f(alpha) lt alpha^(2)AA alpha epsilon(0,1)`

C

`f(alpha)=alpha^(3)` for some `alpha epsilon R^(+)`

D

`lim_(alphato 0^(+)) (f(alpha))/(alpha) lt lim_(alpha to 0^(+)) (sinalpha)/(alpha)`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x^(2)+yf(z))=x.f(x)+zf(y)`
`x=y=z=0`
`f(0)=0`
`x=0`
`f(y.f(z))=zf(y)`
`y=z=t`
`f(t.f(f))=t.f(t)`
Using this and susbtitution, we get `f(x)=x` and `f(x)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

If a function f: R ->R be such that f(x-f(y)) = f(f(y) )+xf(y)+f(x) -1 AA x , y in R then f(2)=

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Let f(x + y) = f(x) .f(y) AA x, y in R suppose that f(k) =3, k in R and f'(0) = 11 then find f'(k)

consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) f(x) is

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

A function g(x) is defined g(x)=2f(x^2/2)+f(6-x^2),AA x in R such f''(x)> 0, AA x in R , then m g(x) has