Home
Class 12
MATHS
Let A0,A1,.......,A(n-1) be a n-sided ...

Let `A_0,A_1,.......,A_(n-1)` be a n-sided polygon with vertices as `1,omega,omega^2,.......,omega^(n-1)` Let `B_1, B_1,..... B_(n -1)` be another polygon with vertices `1 , 1 + omega, 1 +omega^2,........,1+omega^(n-1)[omega=cos((2pi )/n)+i sin n((2pi)/n)] ` for `n=4,(A rdot(A_0, A_1, A_2, A_3))/(A r*(B_0, B_1, , B_3))` is `lambda` then

A

`[lamda]gt3`

B

`(3lamda)/2 epsilon I^(+)`

C

`([lamda])/3 epsilon I^(+)`

D

`lamda` is irrational

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the areas of two polygons defined by their vertices. Let's break down the steps to find the solution. ### Step 1: Define the vertices of the polygons 1. **For the first polygon \(A_0, A_1, A_2, A_3\)**: - The vertices are given by \(1, \omega, \omega^2, \omega^3\), where \(\omega = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right)\). - For \(n = 4\): \[ \omega = \cos\left(\frac{2\pi}{4}\right) + i \sin\left(\frac{2\pi}{4}\right) = \cos\left(\frac{\pi}{2}\right) + i \sin\left(\frac{\pi}{2}\right) = 0 + i(1) = i \] - Thus, the vertices are: - \(A_0 = 1\) (which is \((1, 0)\)) - \(A_1 = \omega = i\) (which is \((0, 1)\)) - \(A_2 = \omega^2 = -1\) (which is \((-1, 0)\)) - \(A_3 = \omega^3 = -i\) (which is \((0, -1)\)) 2. **For the second polygon \(B_0, B_1, B_2, B_3\)**: - The vertices are given by \(1, 1 + \omega, 1 + \omega^2, 1 + \omega^3\). - Thus, the vertices are: - \(B_0 = 1\) (which is \((1, 0)\)) - \(B_1 = 1 + \omega = 1 + i\) (which is \((1, 1)\)) - \(B_2 = 1 + \omega^2 = 1 - 1 = 0\) (which is \((0, 0)\)) - \(B_3 = 1 + \omega^3 = 1 - i\) (which is \((1, -1)\)) ### Step 2: Calculate the area of polygon \(A\) The area of a polygon can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \left| \sum_{i=0}^{n-1} (x_i y_{i+1} - y_i x_{i+1}) \right| \] where \((x_n, y_n) = (x_0, y_0)\). For polygon \(A\): - Vertices: \((1, 0), (0, 1), (-1, 0), (0, -1)\) Calculating the area: \[ \text{Area}_A = \frac{1}{2} \left| 1 \cdot 1 + 0 \cdot 0 + (-1) \cdot (-1) + 0 \cdot 0 - (0 \cdot 0 + 1 \cdot (-1) + 0 \cdot 0 + (-1) \cdot 1) \right| \] \[ = \frac{1}{2} \left| 1 + 0 + 1 + 0 - (0 - 1 + 0 - 1) \right| \] \[ = \frac{1}{2} \left| 2 + 2 \right| = \frac{1}{2} \cdot 4 = 2 \] ### Step 3: Calculate the area of polygon \(B\) For polygon \(B\): - Vertices: \((1, 0), (1, 1), (0, 0), (1, -1)\) Calculating the area: \[ \text{Area}_B = \frac{1}{2} \left| 1 \cdot 1 + 1 \cdot 0 + 0 \cdot (-1) + (-1) \cdot 0 - (0 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + (-1) \cdot 1) \right| \] \[ = \frac{1}{2} \left| 1 + 0 + 0 + 0 - (0 + 0 + 0 - 1) \right| \] \[ = \frac{1}{2} \left| 1 + 1 \right| = \frac{1}{2} \cdot 2 = 1 \] ### Step 4: Find the ratio of the areas Now, we find the ratio of the areas: \[ \lambda = \frac{\text{Area}_A}{\text{Area}_B} = \frac{2}{1} = 2 \] ### Conclusion The value of \(\lambda\) is \(2\).

To solve the problem, we need to find the ratio of the areas of two polygons defined by their vertices. Let's break down the steps to find the solution. ### Step 1: Define the vertices of the polygons 1. **For the first polygon \(A_0, A_1, A_2, A_3\)**: - The vertices are given by \(1, \omega, \omega^2, \omega^3\), where \(\omega = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right)\). - For \(n = 4\): \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

if 1 , omega ,omega^2 ,............. omega^(n-1) are nth roots of unity , then (1-omega) (1-omega^2).......(1-omega^(n-1)) equal to

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If 1,omega,omega^(2),...omega^(n-1) are n, nth roots of unity, find the value of (9-omega)(9-omega^(2))...(9-omega^(n-1)).

Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + omega^(8)) ….to 2n factors = 1

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If one of the cube roots of 1 be omega , then |(1,1+omega^2,omega^2),(1-i,-1,omega^2-1),(-i,-1+omega,-1)| (A) omega (B) i (C) 1 (D) 0

If 1.omega, omega^2 are the roots of unity, then Delta=|(1,omega^n,omega^(2n)),(omega^n,omega^(2n),1),(omega^(2n),1,omega^n)| is equal to

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.