To solve the problem, we need to find the ratio of the areas of two polygons defined by their vertices. Let's break down the steps to find the solution.
### Step 1: Define the vertices of the polygons
1. **For the first polygon \(A_0, A_1, A_2, A_3\)**:
- The vertices are given by \(1, \omega, \omega^2, \omega^3\), where \(\omega = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right)\).
- For \(n = 4\):
\[
\omega = \cos\left(\frac{2\pi}{4}\right) + i \sin\left(\frac{2\pi}{4}\right) = \cos\left(\frac{\pi}{2}\right) + i \sin\left(\frac{\pi}{2}\right) = 0 + i(1) = i
\]
- Thus, the vertices are:
- \(A_0 = 1\) (which is \((1, 0)\))
- \(A_1 = \omega = i\) (which is \((0, 1)\))
- \(A_2 = \omega^2 = -1\) (which is \((-1, 0)\))
- \(A_3 = \omega^3 = -i\) (which is \((0, -1)\))
2. **For the second polygon \(B_0, B_1, B_2, B_3\)**:
- The vertices are given by \(1, 1 + \omega, 1 + \omega^2, 1 + \omega^3\).
- Thus, the vertices are:
- \(B_0 = 1\) (which is \((1, 0)\))
- \(B_1 = 1 + \omega = 1 + i\) (which is \((1, 1)\))
- \(B_2 = 1 + \omega^2 = 1 - 1 = 0\) (which is \((0, 0)\))
- \(B_3 = 1 + \omega^3 = 1 - i\) (which is \((1, -1)\))
### Step 2: Calculate the area of polygon \(A\)
The area of a polygon can be calculated using the formula:
\[
\text{Area} = \frac{1}{2} \left| \sum_{i=0}^{n-1} (x_i y_{i+1} - y_i x_{i+1}) \right|
\]
where \((x_n, y_n) = (x_0, y_0)\).
For polygon \(A\):
- Vertices: \((1, 0), (0, 1), (-1, 0), (0, -1)\)
Calculating the area:
\[
\text{Area}_A = \frac{1}{2} \left| 1 \cdot 1 + 0 \cdot 0 + (-1) \cdot (-1) + 0 \cdot 0 - (0 \cdot 0 + 1 \cdot (-1) + 0 \cdot 0 + (-1) \cdot 1) \right|
\]
\[
= \frac{1}{2} \left| 1 + 0 + 1 + 0 - (0 - 1 + 0 - 1) \right|
\]
\[
= \frac{1}{2} \left| 2 + 2 \right| = \frac{1}{2} \cdot 4 = 2
\]
### Step 3: Calculate the area of polygon \(B\)
For polygon \(B\):
- Vertices: \((1, 0), (1, 1), (0, 0), (1, -1)\)
Calculating the area:
\[
\text{Area}_B = \frac{1}{2} \left| 1 \cdot 1 + 1 \cdot 0 + 0 \cdot (-1) + (-1) \cdot 0 - (0 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + (-1) \cdot 1) \right|
\]
\[
= \frac{1}{2} \left| 1 + 0 + 0 + 0 - (0 + 0 + 0 - 1) \right|
\]
\[
= \frac{1}{2} \left| 1 + 1 \right| = \frac{1}{2} \cdot 2 = 1
\]
### Step 4: Find the ratio of the areas
Now, we find the ratio of the areas:
\[
\lambda = \frac{\text{Area}_A}{\text{Area}_B} = \frac{2}{1} = 2
\]
### Conclusion
The value of \(\lambda\) is \(2\).