Home
Class 12
MATHS
For continuous function f: [0, 1]-> R ; ...

For continuous function `f: [0, 1]-> R ; A =int_0^1 (x^2* f(x))dx ; B=int_0^1 x * (f(x))^2 dx` then, maximumvalue of `A-B `is `lambda` where `[1/(4lambda)]` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( A - B \) where: \[ A = \int_0^1 x^2 f(x) \, dx \] \[ B = \int_0^1 x (f(x))^2 \, dx \] ### Step 1: Express \( A - B \) We can express \( A - B \) as: \[ A - B = \int_0^1 x^2 f(x) \, dx - \int_0^1 x (f(x))^2 \, dx \] This can be rewritten as: \[ A - B = \int_0^1 \left( x^2 f(x) - x (f(x))^2 \right) \, dx \] ### Step 2: Factor the integrand We can factor out \( x \) from the integrand: \[ A - B = \int_0^1 x \left( x f(x) - (f(x))^2 \right) \, dx \] ### Step 3: Analyze the expression \( x f(x) - (f(x))^2 \) Notice that we can rewrite the expression inside the integral: \[ x f(x) - (f(x))^2 = f(x) \left( x - f(x) \right) \] Thus, we have: \[ A - B = \int_0^1 x f(x) \left( x - f(x) \right) \, dx \] ### Step 4: Determine the maximum value of \( A - B \) To maximize \( A - B \), we need to maximize the product \( f(x)(x - f(x)) \). The function \( g(x) = x - f(x) \) will be maximized when \( f(x) \) is at its midpoint between 0 and 1. Setting \( f(x) = kx \) for some \( k \) in the interval [0, 1], we can find the maximum value of \( kx(1 - kx) \). ### Step 5: Find the maximum of \( kx(1 - kx) \) The maximum of the function \( kx(1 - kx) \) occurs at \( x = \frac{1}{2k} \) when \( k \) is chosen such that \( 0 < k < 1 \). The maximum value occurs when: \[ f(x) = \frac{1}{2} \] Thus, we have: \[ A - B \leq \int_0^1 \frac{1}{4} x \, dx = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \] ### Step 6: Conclusion The maximum value of \( A - B \) is \( \frac{1}{12} \). Therefore, we have: \[ \lambda = \frac{1}{12} \] Finally, we need to find \( \frac{1}{4\lambda} \): \[ \frac{1}{4\lambda} = \frac{1}{4 \cdot \frac{1}{12}} = \frac{12}{4} = 3 \] ### Final Answer Thus, the value of \( \frac{1}{4\lambda} \) is: \[ \boxed{3} \]

To solve the problem, we need to find the maximum value of \( A - B \) where: \[ A = \int_0^1 x^2 f(x) \, dx \] \[ B = \int_0^1 x (f(x))^2 \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a function f: [0, 1] -> R satisfying int_0 ^1 (f(x)(x-f(x))dx = 1/12 , then, f'(1) is k where [1/k] is

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

If f(x)=int_a^x[f(x)]^(-1)dx and int_a^1[f(x)]^(-1)dx=sqrt(2) , then