Home
Class 12
MATHS
If alpha in(0,1) and f:R->R and lim(x->o...

If `alpha in(0,1)` and `f:R->R` and `lim_(x->oo)f(x)=0,lim_(x->oo)(f(x)-f(alphax))/x=0,` then `lim_(x->oo)f(x)/x=lambda` where `2lambda+7` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given limits and derive the required value of \(2\lambda + 7\). ### Step 1: Understand the Given Information We have the following limits: 1. \(\lim_{x \to \infty} f(x) = 0\) 2. \(\lim_{x \to \infty} \frac{f(x) - f(\alpha x)}{x} = 0\) 3. We need to find \(\lim_{x \to \infty} \frac{f(x)}{x} = \lambda\) ### Step 2: Analyze the Second Limit From the second limit, we can rewrite it as: \[ \lim_{x \to \infty} \left( \frac{f(x)}{x} - \frac{f(\alpha x)}{x} \right) = 0 \] This implies: \[ \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{f(\alpha x)}{x} \] ### Step 3: Change of Variable Let \(y = \alpha x\). As \(x \to \infty\), \(y \to \infty\) as well. Thus, we can express the second limit in terms of \(y\): \[ \lim_{y \to \infty} \frac{f\left(\frac{y}{\alpha}\right)}{\frac{y}{\alpha}} = \alpha \lim_{y \to \infty} \frac{f\left(\frac{y}{\alpha}\right)}{y} \] ### Step 4: Substitute the Limits Using the fact that \(\lim_{x \to \infty} \frac{f(x)}{x} = \lambda\), we have: \[ \lambda = \alpha \lambda \] ### Step 5: Solve for \(\lambda\) Rearranging gives: \[ \lambda - \alpha \lambda = 0 \implies \lambda(1 - \alpha) = 0 \] Since \(\alpha \in (0, 1)\), we must have \(\lambda = 0\). ### Step 6: Calculate \(2\lambda + 7\) Now that we have \(\lambda = 0\), we can substitute it into the expression: \[ 2\lambda + 7 = 2(0) + 7 = 7 \] ### Final Answer Thus, the value of \(2\lambda + 7\) is: \[ \boxed{7} \] ---

To solve the problem step by step, we will analyze the given limits and derive the required value of \(2\lambda + 7\). ### Step 1: Understand the Given Information We have the following limits: 1. \(\lim_{x \to \infty} f(x) = 0\) 2. \(\lim_{x \to \infty} \frac{f(x) - f(\alpha x)}{x} = 0\) 3. We need to find \(\lim_{x \to \infty} \frac{f(x)}{x} = \lambda\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

If f(x) =x , x 0 then lim_(x->0) f(x) is equal to

If f(x)=sqrt((x-sinx)/(x+cos^2x)) , then lim (x->oo)f(x) is

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If f(x)=lim_(m->oo) lim_(n->oo)cos^(2m) n!pix then the range of f(x) is

If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim_(xto oo)f(x) is

Let f(x) lt 0 AA x in (-oo, 0) and f (x) gt 0 AA x in (0,oo) also f (0)=0, Again f'(x) lt 0 AA x in (-oo, -1) and f '(x) gt 0 AA x in (-1,oo) also f '(-1)=0 given lim _(x to -oo) f (x)=0 and lim _(x to oo) f (x)=oo and function is twice differentiable. The minimum number of points where f'(x) is zero is: (a) 1 (b) 2 (c) 3 (d) 4

Let f(x)=x+sqrt(x^2+2x) and g(x)=sqrt(x^2+2x-x) , then which of the following is/are true. a. lim_(x->oo)g(x)=1 b. lim_(x->oo)f(x)=1 c. lim_(x->oo)f(x)=-1 d. lim_(x->oo)g(x)=-1