Home
Class 12
MATHS
fn(x)=e^(f(n-1)(x)) for all n in Na n d...

`f_n(x)=e^(f_(n-1)(x))` for all `n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)}` is `(f_n(x)d)/(dx){f_(n-1)(x)}` (b) `f_n(x)f_(n-1)(x)` `f_n(x)f_(n-1)(x)f_2(x)dotf_1(x)` `non eoft h e s e`

A

`f_(n)(x)d/(dx)(f_(n-1)(x))`

B

`f_(n)(x)f_(n-1)(x)`

C

`f_(n)(x)f_(n-1)(x)…….f_(2)(x)f_(1)(x)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`d/(dx)f_(n)(x)=d/(dx){e^(f_(n-1)(x))}`
`e^(f_(n-1)(x)) d/(dx)f_(n-1)(x)`
`impliesf_(n)(x) d/(dx)(f_(n-1)(x))`
`=f_(n)(x)d/(dx) (e^(f_(n-2)(x)))`
`impliesf_(n)(x)e^(f_(n-2)(x)) d/(dx)f_(n-2)(x)`
`=f_(n)(x)f_(n-1)(x)d/(dx)f_(n-2)(x)`
`impliesf_(n)(x)f_(n-1)(x)...f_(2)(x) d/(dx)f_(1)(x)`
`=f_(n)(x)f_(n-1)(x)......f_(2)(x)e^(f_(@)(X))d/(dx)f_(@)(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

If f(x)=(x^2)/(|x|) , write d/(dx)(f(x))

If f(x)=|x|+|x-1| , write the value of d/(dx)(f(x)) .

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f: R^+ to R , f(x) + 3x f(1/x)= 2(x+1),t h e n find f(x)

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

Which of the following functions are identical? (a)f(x)=1nx^2a n dg(x)=21nx (b)f(x)=(log)_x ea n dg(x)=1/((log)_e x) (c)f(x)="sin"(cos^(-1)x)a n dg(x)="cos"(sin^(-1)x) (d)non eoft h e s e

If f(x)=cos^2x+s e c^2x ,t h e n f(x)<1 (b) f(x)=1 (c) 2ltf(x)<1 (d) """"f(x)ge2