Home
Class 12
MATHS
If f(x) be a twice differentiable functi...

If `f(x)` be a twice differentiable function from `RR rarr RR` such that `t^(2)f(x)-2tf'(x)+f''(x)=0` has two equal values of t for all `x` and `f(0)=1,f'(0)=2,` then `lim_(x rarr 0)((f(x)-1)/(x)-(t)/(2))` is

Text Solution

Verified by Experts

The correct Answer is:
1

`t^(2)f(x)-2tf^(')(x)+f^('')(x)=0` has equal roots
`D=0implies(f^('')(x))/(f^(')(x))=(f^(')(x))/(f(x))`
`impliesIn (f^(')(x))=In (f(x))-InC`
`impliesf(x)=Cf^(')(x)`
`impliesf(0)=C.f^(')(0)`
`impliesC=1/2`
`:.(f^(')(x))/(f(x))=2impliesInf(x)=2x+k`
`impliesIn (f(0))=kimpliesk=0`
`impliesIn (f(x))=2ximpliesf(x)=e^(2x)`
`t^(2)e^(2x)-4te^(2x)+4e^(2x)=0`
`lim_(x to 0) ((f(x)-1)/x-t/2)=lim_(x to o) ((e^(2x)-1)/(2x)xx 2- 2/2)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0 . Then

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2 and f(1)=1, then

Let f:RrarrR be such that f(a)=1, f(a)=2 . Then lim_(x to 0)((f^(2)(a+x))/(f(a)))^(1//x) is

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)