Home
Class 12
CHEMISTRY
The half cell potential of a half-cell A...

The half cell potential of a half-cell `A^(x+), A^((x+n)+)|Pt` were found to be as follows:
`{:(%"of reduced form",24.4,48.8),("Cell potential"//N,0.101,0.115):}`
Determine the value of `n`.
[take `(2.303RT)/(F) = 0.05, log_(10)24.4 = 1.387, log_(10) 75.6 = 1.878 log_(10) 48.8 = 1.688, log_(10) 51.2 = 1.709]`

Text Solution

Verified by Experts

The correct Answer is:
2

Considering the reduction reaction
`A^((x+n)+)+ "ne" to A^(x+)`
`:. overset("Oxidized form")([A^(x+)]=24.4) :. overset("Reduced form")([A^((x+n)+)])=75.6, E_(RP)=0.10V`
Now from Nernst's equation
`E_(RP)=E_(RP)^(0)+0.059/n "log" ([OF])/([RF])`
`0.101=E_(RP)^(0)+0.059/n "log" 75.6/24.4`...........(i)
If `]A^(x+)]=48.8, [A^((x+n)+)]=51.2, E=0.115`
`:. 0.005=E_(RP)^(0)+0.059/n "log" 51.2/48.8`..........(ii)
By eqs. (ii) -(i)
`:. 0.0014=0.059/n["log" 51.2/48.8-"log"75.6/24.4]`
`=n=0.059/0.014[0.49-0.020]`
`n=1.98~~2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The half cell potentials of a halfcell A^((x+n)+) , A^(x+)|pt were found to be as follows : {:(% "of reduced form",24.4,48.8),("Half cell potential (V)",0.101,0.115):} Determinwe the value of n .

Express each of the following in exponential form : (i) log_(8) 0.125 = -1 (ii) log_(10) 0.01 = -2 (iii) log_(a) A = x (iv) log_(10)1 = 0

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Solve the equations log_1000 |x+y| = 1/2 . log_10 y - log_10 |x| = log_100 4 for x and y

Evaluate : (i) log_(10) 0.01 (ii) log_(2) (1 div 8) (iii) log_(5)1 (iv) log_(5) 125 (v) log_(16)8 (vi) log_(0.5) 16

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

State, true or false : (i) If log_(10)x = a , then 10^(x) = a (ii) If x^(y) = z , then y = log_(z) x . (iii) log_(2) 8 = 3 and log_(8) 2 = (1)/(3) .

If (log)_(10)33. 8=1. 5289 ,\ t h e n(log)_(10)0. 338 is- a. 1 .5289 b. \ -0. 4711 c. -1. 5289 d. 2 .5289

The maximum integral values of x in the domain of f (x) =log _(10)(log _(1//3)(log _(4) (x-5)) is : (a). 5 (b). 7 (c). 8 (d). 9

The value [(1)/(6)((2log_(10)(1728))/(1+(1)/(2)log_(10)(0.36)+(1)/(3)log_(10)8))^(1//2)]^(-1) is :