Home
Class 12
MATHS
bara & barb be two vectors such that |a|...

`bara` & `barb` be two vectors such that `|a|=1,|b|=4`& `bara.barb=2`. If `barc=(2baraxxbarb)-3barb`, then which of the following is/are correct?

A

`barb.barc=48`

B

`barb.barc=-48`

C

Angle between `barb` & `barc` is`(5pi)/6`

D

Angle between `barb` & `barc` is `(pi)/6`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the Given Information We are given two vectors \( \mathbf{a} \) and \( \mathbf{b} \) such that: - \( |\mathbf{a}| = 1 \) - \( |\mathbf{b}| = 4 \) - \( \mathbf{a} \cdot \mathbf{b} = 2 \) We also have \( \mathbf{c} = 2(\mathbf{a} \times \mathbf{b}) - 3\mathbf{b} \). ### Step 2: Find the Angle Between the Vectors Using the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \] Substituting the known values: \[ 2 = 1 \cdot 4 \cdot \cos \theta \] This simplifies to: \[ \cos \theta = \frac{2}{4} = \frac{1}{2} \] Thus, the angle \( \theta \) is: \[ \theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^\circ \] ### Step 3: Calculate the Cross Product Magnitude Using the sine formula for the cross product: \[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta \] Substituting the values: \[ |\mathbf{a} \times \mathbf{b}| = 1 \cdot 4 \cdot \sin(60^\circ) = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \] ### Step 4: Substitute into the Expression for \( \mathbf{c} \) Now substituting into the expression for \( \mathbf{c} \): \[ \mathbf{c} = 2(\mathbf{a} \times \mathbf{b}) - 3\mathbf{b} \] Calculating \( 2(\mathbf{a} \times \mathbf{b}) \): \[ 2(\mathbf{a} \times \mathbf{b}) = 2(2\sqrt{3}) = 4\sqrt{3} \] Thus: \[ \mathbf{c} = 4\sqrt{3} - 3\mathbf{b} \] ### Step 5: Calculate the Magnitude of \( \mathbf{c} \) To find the magnitude of \( \mathbf{c} \), we need to calculate: \[ |\mathbf{c}|^2 = |4\sqrt{3} - 3\mathbf{b}|^2 \] Using the formula for the magnitude: \[ |\mathbf{c}|^2 = |4\sqrt{3}|^2 + |3\mathbf{b}|^2 - 2(4\sqrt{3})(3|\mathbf{b}|)\cos(180^\circ) \] Substituting \( |\mathbf{b}| = 4 \): \[ |\mathbf{c}|^2 = (4\sqrt{3})^2 + (3 \cdot 4)^2 + 2(4\sqrt{3})(3 \cdot 4) \] Calculating each term: \[ = 48 + 144 + 2(4\sqrt{3})(12) \] \[ = 48 + 144 - 96\sqrt{3} \] Thus: \[ |\mathbf{c}|^2 = 192 \] Taking the square root gives: \[ |\mathbf{c}| = 8\sqrt{3} \] ### Step 6: Find the Angle Between \( \mathbf{b} \) and \( \mathbf{c} \) Now we find the angle between \( \mathbf{b} \) and \( \mathbf{c} \) using the dot product: \[ \mathbf{c} \cdot \mathbf{b} = 2(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} - 3|\mathbf{b}|^2 \] Since \( \mathbf{a} \times \mathbf{b} \) is perpendicular to \( \mathbf{b} \), the first term is zero: \[ \mathbf{c} \cdot \mathbf{b} = -3(4^2) = -48 \] Using the cosine formula: \[ \cos \alpha = \frac{\mathbf{c} \cdot \mathbf{b}}{|\mathbf{c}| |\mathbf{b}|} \] Substituting the values: \[ \cos \alpha = \frac{-48}{(8\sqrt{3})(4)} = \frac{-48}{32\sqrt{3}} = \frac{-3}{2\sqrt{3}} = -\frac{\sqrt{3}}{2} \] Thus: \[ \alpha = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6} \] ### Conclusion The angle between \( \mathbf{b} \) and \( \mathbf{c} \) is \( \frac{5\pi}{6} \).

To solve the problem, we will follow these steps: ### Step 1: Understand the Given Information We are given two vectors \( \mathbf{a} \) and \( \mathbf{b} \) such that: - \( |\mathbf{a}| = 1 \) - \( |\mathbf{b}| = 4 \) - \( \mathbf{a} \cdot \mathbf{b} = 2 \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let bara,barb,barc be unit vectors such that bara+barb+barc=bar0 . Which one of the following is correct?

IF bara,barb,barc are unit vectors such that bara+barb+barc=0 then the value of bara.barb+barb.barc+barc.bara is

If bara ,barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .

If barc=bara times barb and barb=barc times bara then

For two events A and B, let P(A) = 3/5 , P(B) = 2/3 , then which of the following is correct?

bara,barb,barc are three unit vectors such that |bara-barb|^2+|bara-barc|^2=8 ,then |bara+2barb|^2+|bara+2barc|^2=

Two vectors vecA and vecB are such that vecA+vecB=vecC and A^(2)+B^(2)=C^(2) . Which of the following statements, is correct:-

If theta is the angle between any two vectors bara and barb and | bara xx barb | = | bara.barb | , then value of theta is

Let bara barb barc be three unit vectors such that |bara+barb+barc| =1 and barc makes angles a and b with bara and barb respectively then cosa+cosb is equal to