Home
Class 12
MATHS
If f:R rarr (0,oo)be a differentiable f...

If `f:R rarr (0,oo)`be a differentiable function `f(x)` satisfying
`f(x+y)-f(x-y)=f(x)*{f(y)-f(-y)}, AA x, y in R, (f(y)!= f(-y) " for all " y in R)` and `f'(0)=2010`.
Now, answer the following questions.
Which of the following is true for `f(x)`

A

`e^(x)`

B

`2 ln x`

C

`4`

D

`a^(x)`

Text Solution

Verified by Experts

The correct Answer is:
D

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr (0,oo) be a differentiable function f(x) satisfying f(x+y)-f(x-y)=f(x)*{f(y)-f(y)-y}, AA x, y in R, (f(y)!= f(-y) " for all " y in R) and f'(0)=2010 . Now, answer the following questions. let g(x)=log_(e)(sin x) , and int f(g(x))cos x dx=h(x)+c , (where c is constant of integration), then h(pi/2) is equal to

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y)f(z)=14" for all "x,y,z inR Then,

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If f:R-{-1}toR and f is differentiable function satisfies: f((x)+f(y)+xf(y))=y+f(x)+yf(x)AAx, yinR-{_1} Find f(x).

If f is a real- valued differentiable function satisfying |f(x) - f(y)| le (x-y)^(2) ,x ,y , in R and f(0) =0 then f(1) equals