Home
Class 12
MATHS
Let P (x)=x ^(6) -x ^(5) -x ^(3) -x ^(2)...

Let `P (x)=x ^(6) -x ^(5) -x ^(3) -x ^(2) -x and alpha, beta, gamma, delta` are the roots of the equation `x ^(4) -x ^(3)-x ^(2) -1=0,` then `P (alpha ) + P (beta) +P (gamma) + P(delta)=`

Text Solution

Verified by Experts

The correct Answer is:
6

`Q(x)=(x^(3)-2x^(2)+x-1)(x+1)=0impliesdelta=-1`
`alpha+ beta+gamma=2, alpha beta+beta gamma +gamma alpha=1`
`p(x)=(x^(2)+1)Q(x)+x^(2)-x+1`
`p(alpha)+p(beta)+p(gamma)+p(-1)=alpha^(2)+beta^(2)+gamma^(2)+1-(alpha+beta+gamma-1)+4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha, beta and gamma are three ral roots of the equatin x ^(3) -6x ^(2)+5x-1 =0, then the value of alpha ^(4) + beta ^(4) + gamma ^(4) is:

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If alpha, beta , gamma, delta are the roots of the equation x^4+x^2+1=0 then the equation whose roots are alpha^2, beta^2, gamma^2, delta^2 is

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta, gamma, delta be the real of the equation x^4+4x^3-6x^2+7x-9=0 show that (1+alpha^2)(1+beta^2) (1+gamma^2)(1+delta^2) equal to 13.

Let alpha , beta, gamma, delta are roots of x ^(4) -12x ^(3) +lamda x ^(2) -54 x+ 14 =0 If alpha + beta =gamma + delta, then