Home
Class 12
MATHS
If intcos2018xsin^(2016)x dx=f(x)+c, whe...

If `intcos2018xsin^(2016)x dx=f(x)+c`, where `f(0)=0`, then

A

`int_(0)^(pi)f(x)dx=f(pi)`

B

`f((pi/4)=1/(2^(1009)) . 1/2017`

C

`f((pi)/4)=1/((2018)2^(1009))`

D

`f(x)` is odd function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int \cos(2018x) \sin^{2016}(x) \, dx \) and express it in the form \( f(x) + c \) where \( f(0) = 0 \). ### Step-by-Step Solution: 1. **Identify the Integral**: We start with the integral: \[ I = \int \cos(2018x) \sin^{2016}(x) \, dx \] 2. **Use Integration by Parts**: We can use integration by parts. Let: - \( u = \sin^{2016}(x) \) - \( dv = \cos(2018x) \, dx \) Then, we need to find \( du \) and \( v \): - \( du = 2016 \sin^{2015}(x) \cos(x) \, dx \) - \( v = \frac{1}{2018} \sin(2018x) \) 3. **Apply Integration by Parts Formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Applying this, we get: \[ I = \left( \sin^{2016}(x) \cdot \frac{1}{2018} \sin(2018x) \right) - \int \frac{1}{2018} \sin(2018x) \cdot 2016 \sin^{2015}(x) \cos(x) \, dx \] 4. **Simplify the Integral**: This simplifies to: \[ I = \frac{1}{2018} \sin^{2016}(x) \sin(2018x) - \frac{2016}{2018} \int \sin^{2015}(x) \cos(x) \sin(2018x) \, dx \] 5. **Evaluate the Remaining Integral**: The remaining integral can be evaluated using similar techniques or further integration by parts, but for our purpose, we will denote it as \( J \): \[ J = \int \sin^{2015}(x) \cos(x) \sin(2018x) \, dx \] 6. **Final Expression**: Thus, we can express the original integral as: \[ I = \frac{1}{2018} \sin^{2016}(x) \sin(2018x) - \frac{2016}{2018} J + C \] where \( C \) is the constant of integration. 7. **Determine \( f(x) \)**: To find \( f(x) \), we need to ensure that \( f(0) = 0 \). Evaluating at \( x = 0 \): \[ f(0) = \frac{1}{2018} \sin^{2016}(0) \sin(0) - \frac{2016}{2018} J(0) + C = 0 \] Since both \( \sin^{2016}(0) \) and \( \sin(0) \) are 0, we have: \[ C = 0 \] Therefore, \( f(x) \) can be expressed as: \[ f(x) = \frac{1}{2018} \sin^{2016}(x) \sin(2018x) - \frac{2016}{2018} J \]

To solve the problem, we need to evaluate the integral \( \int \cos(2018x) \sin^{2016}(x) \, dx \) and express it in the form \( f(x) + c \) where \( f(0) = 0 \). ### Step-by-Step Solution: 1. **Identify the Integral**: We start with the integral: \[ I = \int \cos(2018x) \sin^{2016}(x) \, dx ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

If a, b (altb) be the points of discontinuity of function f(f(f(x))) , where f(x)=1/(1-x),x!=1 , then int_a^b f(x)/(f(x)+f(1-x))dx= (A) 0 (B) 1/2 (C) 1 (D) 2

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integration), then the range of y=f(x), AA x in R-{-1, 0} is

If the integral I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C (where C is the integration constant) and f(0)=5/7 , then the value of f((pi)/(4)) is equal to