Home
Class 12
MATHS
In a /\ABC if a^(2)-b^(2)-c^(2)+(x-2)bc=...

In a `/_\ABC` if `a^(2)-b^(2)-c^(2)+(x-2)bc=0` then `x` be equal to

A

`1/2`

B

`3/2`

C

`2`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) in the equation given for triangle \( \triangle ABC \): \[ a^2 - b^2 - c^2 + (x - 2)bc = 0 \] ### Step-by-Step Solution: 1. **Rearranging the Equation**: Start by isolating \( x \) in the equation: \[ a^2 - b^2 - c^2 + (x - 2)bc = 0 \] Rearranging gives: \[ (x - 2)bc = b^2 + c^2 - a^2 \] 2. **Dividing by \( bc \)**: Next, divide both sides by \( bc \) (assuming \( bc \neq 0 \)): \[ x - 2 = \frac{b^2 + c^2 - a^2}{bc} \] 3. **Adding 2 to Both Sides**: Now, add 2 to both sides to solve for \( x \): \[ x = \frac{b^2 + c^2 - a^2}{bc} + 2 \] 4. **Using the Cosine Rule**: According to the cosine rule in triangle \( ABC \): \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Therefore, we can express \( \frac{b^2 + c^2 - a^2}{bc} \) in terms of \( \cos A \): \[ \frac{b^2 + c^2 - a^2}{bc} = 2 \cos A \] 5. **Substituting Back**: Substitute this back into the equation for \( x \): \[ x = 2 \cos A + 2 \] 6. **Finding the Range of \( x \)**: Since \( \cos A \) can take values from -1 to 1 (as \( A \) varies from \( 0 \) to \( \pi \)): - When \( \cos A = -1 \): \[ x = 2(-1) + 2 = 0 \] - When \( \cos A = 1 \): \[ x = 2(1) + 2 = 4 \] Thus, the value of \( x \) lies in the range: \[ 0 < x < 4 \] ### Conclusion: The possible values for \( x \) are in the interval \( (0, 4) \).

To solve the problem, we need to find the value of \( x \) in the equation given for triangle \( \triangle ABC \): \[ a^2 - b^2 - c^2 + (x - 2)bc = 0 \] ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

If ∣ -a a^2 ab ac ab -b^2 bc ac bc -c^2 | = ka^2b^2c^2 , then k is equal to

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

In DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A , then Delta ABC is

Column I, Column II If a ,b ,c ,a n dd are four zero real numbers such that (d+a-b)^2+(d+b-c)^2=0 and he root of the equation a(b-c)x^2+b(c-a)x=c(a-b)=0 are real and equal, then, p. a+b+c=0 If the roots the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are real and equal, then, q. a ,b ,ca r einAdotPdot If the equation a x^2+b x+c=0a n dx^3-3x^2+3x-0 have a common real root, then, r. a ,b ,ca r einGdotPdot Let a ,b ,c be positive real number such that the expression b x^2+(sqrt((a+b)^2+b^2))x+(a+c) is non-negative AAx in R , then, s. a ,b ,ca r einHdotPdot

If the sines of the angle A and B of a triangle ABC satisfy the equation c^(2) x^(2) - c (a + b) x + ab = 0 , then the triangle