Home
Class 12
MATHS
Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+...

Let `f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx` be an increasing function of `x""inRandbinR`, then "`a`" can take value(s)

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`:' f^(')(x)=b^(2)+(a-1)b+2-(sin^(2)x+cos^(4)x)ge0`
`(f^(')(x))_("min")=b^(2)(a-1)b+1ge0`
`:.(a-1)^(2)-4lt0impliesaepsilon(-1,3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(sin2x)/((1+cos2x)^(2))dx

int(2+sin2x)/(1+cos2 x)dx

Let f(x)={b^(2)+(a-1)b-(1)/(4)}x+int_(0)^(x)(sin^(4)theta+cos^(4)theta)d theta If f(x) be a non- decreasing function AA x in R and AA b in R then "a" can belong to

Let f(x)=x^3+kx^2+5x+4sin^2x be an increasing function on x in R. Then domain of k is

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if

Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rdot Then find the condition on a and b .

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx

4. int(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)