Home
Class 12
MATHS
Let f(x) be a continuous function which ...

Let `f(x)` be a continuous function which takes positive values for `xge0` and satisfy `int_(0)^(x)f(t)dt=x sqrt(f(x))` with `f(1)=1/2`. Then

A

`f(x)` is increasing function in domain

B

`f(x)` is decreasing function in domain

C

`f(sqrt(2)+1)=1/(2sqrt(2))`

D

`f(sqrt(2)+1)=1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) dt = x \sqrt{f(x)} \] with the condition \( f(1) = \frac{1}{2} \). ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus on the left-hand side and the product rule on the right-hand side, we have: \[ f(x) = \sqrt{f(x)} + x \cdot \frac{1}{2\sqrt{f(x)}} f'(x) \] ### Step 2: Rearranging the equation Rearranging the equation gives us: \[ f(x) - \sqrt{f(x)} = \frac{x}{2\sqrt{f(x)}} f'(x) \] ### Step 3: Multiply both sides by \( 2\sqrt{f(x)} \) This leads to: \[ 2f(x)\sqrt{f(x)} - 2f(x) = x f'(x) \] ### Step 4: Factor out \( 2f(x) \) Factoring out \( 2f(x) \): \[ 2f(x)(\sqrt{f(x)} - 1) = x f'(x) \] ### Step 5: Separate variables Now we can separate variables: \[ \frac{f'(x)}{2f(x)(\sqrt{f(x)} - 1)} = \frac{1}{x} \] ### Step 6: Integrate both sides Integrating both sides gives: \[ \int \frac{f'(x)}{2f(x)(\sqrt{f(x)} - 1)} dx = \int \frac{1}{x} dx \] ### Step 7: Use substitution Let \( f(x) = t \). Then \( f'(x) dx = dt \), so we rewrite the left side: \[ \int \frac{1}{2t(\sqrt{t} - 1)} dt = \ln |x| + C \] ### Step 8: Solve the integral on the left side The left-hand side can be simplified and integrated. After integration, we will have: \[ \ln |1 - \sqrt{t}| = \ln |x| + C \] ### Step 9: Exponentiate both sides Exponentiating both sides gives us: \[ 1 - \sqrt{f(x)} = kx \] where \( k = e^C \). ### Step 10: Solve for \( f(x) \) From the above equation, we can express \( f(x) \): \[ \sqrt{f(x)} = 1 - kx \] \[ f(x) = (1 - kx)^2 \] ### Step 11: Use the given condition \( f(1) = \frac{1}{2} \) Substituting \( x = 1 \): \[ f(1) = (1 - k)^2 = \frac{1}{2} \] ### Step 12: Solve for \( k \) This gives us: \[ 1 - k = \frac{1}{\sqrt{2}} \implies k = 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}} \] ### Step 13: Substitute \( k \) back into \( f(x) \) Now substitute \( k \) back into the expression for \( f(x) \): \[ f(x) = \left(1 - \frac{\sqrt{2} - 1}{\sqrt{2}} x\right)^2 \] ### Step 14: Find \( f(\sqrt{2} + 1) \) Finally, we need to calculate \( f(\sqrt{2} + 1) \): \[ f(\sqrt{2} + 1) = \left(1 - \frac{\sqrt{2} - 1}{\sqrt{2}} (\sqrt{2} + 1)\right)^2 \] Calculating this gives us: \[ = \left(1 - \frac{(\sqrt{2} - 1)(\sqrt{2} + 1)}{\sqrt{2}}\right)^2 = \left(1 - \frac{2 - 1}{\sqrt{2}}\right)^2 = \left(1 - \frac{1}{\sqrt{2}}\right)^2 = \left(\frac{\sqrt{2} - 1}{\sqrt{2}}\right)^2 = \frac{(2 - 2\sqrt{2} + 1)}{2} = \frac{3 - 2\sqrt{2}}{2} \] ### Conclusion After evaluating, we find that \( f(\sqrt{2} + 1) = \frac{1}{4} \).

To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) dt = x \sqrt{f(x)} \] with the condition \( f(1) = \frac{1}{2} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

Let f(x) be a continuous function defined for 0lexle3 , if f(x) takes irrational values for all x and f(1)=sqrt(2) , then evaluate f(1.5).f(2.5) .

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Let f:[0,1]to R be a continuous function then the maximum value of int_(0)^(1)f(x).x^(2)dx-int_(0)^(1)x.(f(x))^(2)dx for all such function(s) is:

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

Let f be a continuous function satisfying f '(l n x)=[1 for 0 1 and f (0) = 0 then f(x) can be defined as

Let f: R rarr R be a continuous odd function, which vanishes exactly at one point and f(1)=1/2 . Suppose that F(x)=int_(-1)^xf(t)dt for all x in [-1,2] and G(x)=int_(-1)^x t|f(f(t))|dt for all x in [-1,2] . If lim_(x rarr 1)(F(x))/(G(x))=1/(14) , Then the value of f(1/2) is