Home
Class 12
MATHS
If f(x)=int(2)^(x)(dt)/(1+t^(4)), then...

If `f(x)=int_(2)^(x)(dt)/(1+t^(4))`, then

A

`1/6-1/9 In 3`

B

`1/6-1/9 In 4`

C

`1/6+1/4 In 3`

D

`1/6+1/9 In 4`

Text Solution

Verified by Experts

The correct Answer is:
D

`:. int_(0)^(x) (t^(3))/(1+3t^(2)) dt + int_(0)^(x) (tdt)/(1+3t^(2))=f(x)`
Put `1+3t^(2)=u^(2)implies`
`=int (1/3 udu xx((u^(2)-1)/3))/(u^(2))+1/6 In (1+3t^(2))|_(0)^(x)`
`=1/9 int_(1)^(sqrt(1+3x^(2)) (u-1/u) du+1/6 In (1+3x^(2))`
`=1/9 ((u^(2))/2-Inu)_(1)^(sqrt(1+3x^(2))+1/6 In (1+3x^(2))`
`=1/18 ((1+3x^(2))-1)-1/9 In sqrt(1+3x^(2))+ 1/6 In (1+3x^(2))`
`=1/6 x^(2)+((-1)/18+1/6)` In `(1+3x^(2))`
`=1/6 x^(2)-1/9 In (1+3x^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to