Home
Class 12
MATHS
Find the number of ordered pair of real ...

Find the number of ordered pair of real numbers (x, y) satisfying the equation:
`5x(1+1/(x^(2)+y^(2)))=12 & 5y(1-1/(x^(2) + y^(2))) =4`

A

`|x|=|y|=3`

B

`x+y=1/5`

C

`|x|+|y|=3/5`

D

`x^(2)+y^(2)=5`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`x=12/15 xx 1/ ((1+1/ (x^(2)+y^(2)))`………(i)
and `y=4/5 xx (1/(1- 1/(x^(2)+y^(2))))`………(ii)
Put `x^(2)+y^(2)=1/u` and add `(i)^(2)` and `(ii)^(2)`
`implies1/u=(4/5)^(2) (9/((1+4)^(2))+1/((1-4)^(2)))`
`implies 25(u^(2)-2+1/(u^(2)))=32 {5 (4+ 1/4)-8}`
Put `u+1/u=vimpliesv=6/5` or `26/5`
`implies4=5` or `1/5`
`implies(x,y)=(2,1)` or `(2/5, (-1)/5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of ordered pairs of natural numbers (x, y) satisfying the equation: (xy-1)^(2) = (x+1)^(2) + (y+1)^(2)

The number of ordered pairs of integers (x,y) satisfying the equation x ^2+6x+y^2 =4 is

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :

Find the real numbers (x,y) that satisfy the equation: xy^(2) = 15x^(2) +17xy + 15y^(2) x^(2)y = 20x^(2) + 3y^(2)

Find the number of ordered pairs of (x, y) satisfying the equation y = |sinx| and y = cos^(-1)(cosx) , where x in [-π, π]

The number of ordered pair(s) of (x, y) satisfying the equations log_((1+x))(1-2y+y^(2))+log_((1-y))(1+2x+x^(2))=4 and log_((1+x))(1+2y)+log_((1-y))(1+2x)=2

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.