Home
Class 12
MATHS
Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x...

`Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x}))`, where `{x}` denotes the fractional part of x.
Which of the following is true?

A

`"Lt". _(x to 0^(+))f(x)=sqrt(2) "Lt"_(xto 0^(-)) f(x)`

B

`"Lt."_(xto 0^(-))f(x)=sqrt(2) "Lt."_(x to 0^(+))f(x)`

C

`"Lt"_(x to 0^(-))f(x)=(pi)/(2sqrt(2))`

D

`"Lt"_(xto 0^(-))f(x)=pisqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`:' xto 0^(-) implies{x} =1+x`
`:. lim(xto 0^(-)) f(x)=lim_(xto 0) (sin^(-1)(-x)cos^(-1)(-))/(sqrt(2(1+x)).(-x))=(pi)/(2sqrt(2))`
& for `xto 0^(+)implies{x}=x`
`lim_(xto 0^(+)) f(x)=lim_(xto0) (sin^(-1)(1-x)cos^(-1)(1-x))/(sqrt(2x)(1-x))=(pi)/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then which of the following is true ?

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fractional part of x. Then, which of the following is/are correct?

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to: