Home
Class 12
MATHS
If a,b,c are sides an acute angle triang...

If `a,b,c` are sides an acute angle triangle satisfying `a^(2)+b^(2)+c^(2)=6` then `(ab+bc+ca)` can be equal to

A

3

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the possible values of \( ab + bc + ca \) given that \( a, b, c \) are the sides of an acute triangle and satisfy the equation \( a^2 + b^2 + c^2 = 6 \). ### Step-by-Step Solution: 1. **Understanding the properties of an acute triangle**: In an acute triangle, the square of each side must be less than the sum of the squares of the other two sides. This gives us three inequalities: \[ a^2 < b^2 + c^2, \quad b^2 < a^2 + c^2, \quad c^2 < a^2 + b^2 \] 2. **Using the given equation**: We know that: \[ a^2 + b^2 + c^2 = 6 \] From this, we can derive: \[ b^2 + c^2 = 6 - a^2, \quad a^2 + c^2 = 6 - b^2, \quad a^2 + b^2 = 6 - c^2 \] 3. **Substituting into the inequalities**: Using the inequalities from step 1, we can substitute: \[ a^2 < 6 - a^2 \implies 2a^2 < 6 \implies a^2 < 3 \] Similarly, we can derive: \[ b^2 < 3 \quad \text{and} \quad c^2 < 3 \] 4. **Finding bounds for \( ab + bc + ca \)**: We know from the Cauchy-Schwarz inequality that: \[ (ab + bc + ca) \leq \frac{(a+b+c)^2}{3} \] To find \( a + b + c \), we can use the fact that: \[ (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting \( a^2 + b^2 + c^2 = 6 \): \[ (a+b+c)^2 = 6 + 2(ab + ac + bc) \] 5. **Setting up the inequalities**: From the previous steps, we can derive: \[ ab + ac + bc = \frac{(a+b+c)^2 - 6}{2} \] We need to find the maximum and minimum values of \( ab + ac + bc \). 6. **Using AM-GM inequality**: By the AM-GM inequality: \[ \frac{a^2 + b^2 + c^2}{3} \geq \sqrt[3]{a^2b^2c^2} \] Since \( a^2 + b^2 + c^2 = 6 \): \[ 2 \geq \sqrt[3]{a^2b^2c^2} \implies 8 \geq a^2b^2c^2 \implies 2 \geq abc \] 7. **Finding the range of \( ab + ac + bc \)**: From the inequalities derived: \[ ab + ac + bc < 6 \] And from the earlier steps, we also found that: \[ ab + ac + bc > 3 \] 8. **Conclusion**: Therefore, the value of \( ab + ac + bc \) can lie between 3 and 6. The possible integer values are 4 and 5. ### Final Answer: Thus, \( ab + ac + bc \) can be equal to **4 or 5**.

To solve the problem, we need to find the possible values of \( ab + bc + ca \) given that \( a, b, c \) are the sides of an acute triangle and satisfy the equation \( a^2 + b^2 + c^2 = 6 \). ### Step-by-Step Solution: 1. **Understanding the properties of an acute triangle**: In an acute triangle, the square of each side must be less than the sum of the squares of the other two sides. This gives us three inequalities: \[ a^2 < b^2 + c^2, \quad b^2 < a^2 + c^2, \quad c^2 < a^2 + b^2 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a+b+c =11 and a^(2) + b^(2) + c^(2) =81 , find : ab + bc + ca .

If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) always belongs to

If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) always belongs to

If the sines of the angle A and B of a triangle ABC satisfy the equation c^(2) x^(2) - c (a + b) x + ab = 0 , then the triangle

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca